
Math 1580: Cryptography Lecture Notes

E. Larson

Spring 2022

These are lecture notes for Math 1580: Cryptography taught at Brown University
by Eric Larson in the Spring of 2022.

Notes last updated May 2, 2022.

Contents

0 January 26, 2022 5
0.1 Course Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.3 Simple Substitution Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.4 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 January 28, 2022 5
1.1 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Linear Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 January 31, 2022 5
2.1 Linear Combinations continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 February 2, 2022 9
3.1 Inverses mod m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Modular Arithmetic continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Fastish Powering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 February 4, 2022 13
4.1 Fast Powering continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Fun Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 February 7, 2022 17
5.1 Orders mod p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Discrete Logarithm Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Cryptographic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.1 Symmetric Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

6 February 9, 2022 20
6.1 Asymmetric/Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Diffie-Hellman Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Elgamal Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 February 11, 2022 22
7.1 Elgamal continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Midterm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Introduction to Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 February 14, 2022 24
8.1 Groups continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 Computation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 February 18, 2022 28

10 February 23, 2022 28
10.1 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.2 Euler’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.3 Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 February 25, 2022 31
11.1 RSA Public-Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.2 Primality Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 February 28, 2022 34
12.1 Miller-Rabin Primality Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 March 7, 2022 36
13.1 Pollard’s p− 1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13.2 Quadratic Sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14 March 9, 2022 38

15 March 11, 2022 39
15.1 Quadratic Sieve continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
15.2 Index Calculus & Discrete Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 March 14, 2022 41
16.1 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
16.2 Addition on Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

17 March 16, 2022 43
17.1 Addition on Elliptic Curves continued . . . . . . . . . . . . . . . . . . . . . . . . . 43
17.2 Elliptic Curves over Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

18 March 18, 2022 46
18.1 Elliptic Curves over Finite Fields continued . . . . . . . . . . . . . . . . . . . . . . 46

2



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

18.2 Elliptic Diffe-Hellman Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 48
18.2.1 Elliptic Discrete Log Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 48
18.2.2 Sharing Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

19 March 21, 2022 48
19.1 Elliptic Curve Elgamal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
19.2 Elliptic Curve DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

20 March 23, 2022 51
20.1 Elliptic Curve Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

21 March 25, 2022 53
21.1 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

21.1.1 Deutch’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

22 April 4, 2022 55
22.1 Quantum Computing continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
22.2 Shor’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
22.3 Breaking Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

22.3.1 Integer Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
22.3.2 Quantum Elgamal/DLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

23 April 6, 2022 57
23.1 Lattices and Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
23.2 Subset Sum Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

24 April 8, 2022 60

25 April 11, 2022 60
25.1 Merkle-Hellman Public Key Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 60
25.2 Merkle-Hellman & Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
25.3 Vector Spaces and Inner Products: Review . . . . . . . . . . . . . . . . . . . . . . . 62

26 April 15, 2022 63
26.1 Vector Spaces and Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

27 April 15, 2022 67

28 April 18, 2022 67
28.1 Midterm 2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

29 April 20, 2022 69
29.1 Short Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

30 April 22, 2022 71
30.1 Short Vectors continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
30.2 Babai’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

31 April 25, 2022 74
31.1 Babai’s Algorithm continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

31.2 GGH Cryptosystem: Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . 75

32 April 27, 2022 76
32.1 GGH Cryptosystem: Public-Key Cryptosystem . . . . . . . . . . . . . . . . . . . . 76
32.2 Lattice Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

33 May 2, 2022 78
33.1 LLL Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§0 January 26, 2022

§0.1 Course Logistics

§0.2 Introduction

§0.3 Simple Substitution Ciphers

§0.4 Divisibility

§1 January 28, 2022

§1.1 Greatest Common Divisors

§1.2 Euclidean Algorithm

§1.3 Linear Combinations

§2 January 31, 2022

§2.1 Linear Combinations continued

Recall from last time that we proposed that

greatest common divisor ≤ least linear combination.

Example 2.1
gcd(2024, 748) = 44 because we have

2024 = 748 · 2 + 528

748 = 528 · 1 + 220

528 = 220 · 2 + 88

220 = 88 · 2 + 44 ← gcd(2024, 748)

88 = 44 · 2 + 0

5



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We determine which linear combinations or 2024 and 748 we can create:

2024 = 1 · 2024 + 0 · 748

748 = 0 · 2024 + 1 · 748

528 = 1 · 2024 + (−2) · 748

220 = 748− 1 · 528

= 748− 1 · (1 · 2024 + (−2) · 748)

= −1 · 2024 + 3 · 748

88 = 528− 2 · 220

= [1 · 2024 + (−2) · 748]︸ ︷︷ ︸
528

−2 · [−1 · 2024 + 3 · 748]︸ ︷︷ ︸
220

= 3 · 2024− 8 · 748

44 = 220− 2 · 88

= [−1 · 2024 + 3 · 748]− 2 · [3 · 2024− 8 · 748]

= −7 · 2024 + 19 · 748

Following this example, we have shown that every common divisor of a and b can be written
as a linear combination of a and b, and since the greatest common divisor has to be less than
the least linear combination (as shown last time), the greatest common divisor is the least linear
combination1.

We realize that there is a recurrence happening here. If we call every set of coefficients x, y and
z, w for a and b respectively, such that

a = x · a0 + y · b0
b = z · a0 + y · b0

where a0 and b0 are the original numbers, we can use a sliding window approach2 again to determine
the next set of x, y, z, w, a, b.

Recall from last time we had

a′ = b

b′ = a mod b

We can extend this algorithm for our new coefficients:

x′ = z

y′ = w

z′ = w −
⌊a
b

⌋
· z

w′ = y −
⌊a
b

⌋
· w

1Assume for contradiction that the gcd were any less, then that would also be a linear combination.  
2Updating our iterators on every loop by sliding our window of coefficients down.

6



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

where
⌊
a
b

⌋
are the quotients from our Euclidean Algorithm. Note that initially, we have

a = 1 · a0 + 0 · b0
b = 0 · a0 + 1 · b0

so we have initial values of x = 1, y = 0, z = 0, w = 0.

so our code for the extended Euclidean Algorithm is now

Algorithm 2.2 (Extended Euclidean Algorithm) —

def ext_gcd(a: int, b: int) −> tuple[int, int]:
"""
Computes the gcd of a and b using the extended Euclidean algorithm.
param a: int
param b: int
return: tuple (int x, int y) where ax + by = gcd(a, b)
"""
x, y, z, w = 1, 0, 0, 1
while b != 0:

x, y, z, w = z, w, x − (a // b) ∗ z, y − (a // b) ∗ w
a, b = b, a % b

return (x, y)

§2.2 Modular Arithmetic

Recall: We used a substitution/shift cipher to encrypt text:

Y E S

↓ ↓ ↓
D J X

by incrementing 5 letters for each lecture.

a = 0, b = 1, . . . , z = 25.

We had this notion of

ciphertext = plaintext + 5

d = y + 5

3 = 24 + 5 = 29

7



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Definition 2.3
We say a ≡ b mod m if m | a− b.

We say “a is congruenta to b modulo m”.
aCongruence is a “behave like” equality.

Example 2.4

24 + 5 ≡ 3 mod 26

22 + 2 ≡ 1 mod 12

The first example is from our shift sipher, the second example is equivalent to “two hours after
11:00, it is 1:00”.

Proposition 2.5
If we have

a1 ≡ a2 mod m

b1 ≡ b2 mod m

Then we have the following:

a1 + b1 ≡ a2 + b2 mod m (1)
a1 − b1 ≡ a2 − b2 mod m (2)
a1 · b1 ≡ a2 · b2 mod m (3)

Proof. For eq. (1), realize that we have

(a1 + b1)− (a2 + b2) = (a1 − a2) + (b1 − b2)

and the two terms on the right are each divisible by m by our premise. We can also write out

a1 + b1 = (a2 + αm) + (b2 + βm)

= (a2 + b2) + (α+ β) ·m.

Similarly, for eq. (2), we have

a1 − b1 = a2 + αm− (b2 + βm)

= a2 − b2 + (α− β) ·m.

8



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

and for eq. (3), we have

a1 · b1 = (a2 + αm) · (b2 + βm)

= a2 · b2 + αmb2 + βma2 + αβm2

= a2 · b2 + (αb2 + βa2 + αβm) ·m.

which concludes the proofs of the premod rules.

Proposition 2.6
There exists b with

a · b ≡ 1 mod m

if and only if gcd(a,m) = 1.

Proof. We can write linear combination equation

a · b+m · k = 1

and we have that the following are equivalent (we cascade down the list and can easily prove the iff
relations):

i. such a b exists,

ii. there is a solution b, k to this equation,

iii. 1 is a linear combination of a and m,

iv. 1 is the least linear combination of a and m,

v. 1 = gcd(a,m).

so we have that 1 = gcd(a,m) if and only if a’s inverse b exists.

§3 February 2, 2022

§3.1 Inverses mod m

Recall: Last time, we showed in proposition 2.6 that there exists an integer b with with a · b ≡ 1
mod m iff gcd(a,m) = 1.

Claim 3.1 — We further claim that if such a b exists, then it is unique mod m.

9



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

That is, if we have

a · b1 ≡ 1 (mod m)

a · b2 ≡ 1 (mod m)

then we have that b1 ≡ b2 (mod m).

Proof. We consider b1ab2. We have

b2 ≡ (b1a)b2 = b2(ab2) ≡ b2

all taking mod m.

How, then, could we compute this inverse b efficiently?

Recall that last class, we used the extended Euclidean algorithm to compute the linear combination
of a and m efficiently,

1 = a · u+m · v
≡ a · u mod m

where u is b.

§3.2 Modular Arithmetic continued

Definition 3.2 (Ring of Integers mod m)
Z/mZ = {0, 1, 2, . . . ,m− 1} with operations +,−,× (mod m).

Example 3.3
Z/4Z = {0, 1, 2, 3}. We have the following operation tables for Z/4Z:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

× 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Definition 3.4 (Group of Units mod m)
We have the set of units in Z/mZ as

(Z/mZ)× = {a ∈ Z/mZ | ∃bs.t. a · b ≡ 1}
= {a ∈ Z/mZ | gcd(a,m) = 1}

10



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Example 3.5
(Z/4Z)× = {1, 3}.

Definition 3.6 (Euler Totient Function)
We have

ϕ(m) = #(Z/mZ)×

which counts the number of units modulo m.

Example 3.7
ϕ(4) = 2.

Let’s investigate the properties of units. Let’s say a1, a2 are units. Which of the following have to
be units?

Does this have to be a unit?

a1 · a2 Yes!

Since gcd(a1,m) = 1 and gcd(a2,m) = 2 so we have gcd(a1a2,m) =
1. We also have a1b1 ≡ 1 mod m and a2b2 ≡ 1 mod m, we have
(a1a2)(b2b1) ≡ 1 mod m.

a1 + a2 No. We have counterexample m = 4: 1 + 1 is not a unit.

a1 − a2 Also no. For any a, a− a = 0 which is never a unit.

Definition 3.8 (Prime Number)
An integer n ≥ 2 is prime if its only (positive) divisors are 1 and n.

Example 3.9
Numbers like 2, 3, 5, 7, 11, 12, . . . .

What if m is a prime number? Then we have

(Z/mZ)× = {1, 2, . . . ,m− 1}

so we can divide by elements of Z/mZ, just like in Q,R,C. We can divide by any nonzero element
of Z/mZ. We call these fields!

11



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§3.3 Fastish Powering

Problem. How might we compute ga mod m?

A naïve solution might be

1 def pow_mod(g, a, m):
2 return g ∗∗ a % m

What if we tried to compute pow_mod(239418762304, 12349876234, 12394876123482783641) or
something of the like? Something like this. . .

We could do something a bit more clever, like taking a mod every time we multiply:

1 def pow_mod(g, a, m):
2 p = 1
3 for i in range(a):
4 p = (p ∗ q) % m
5 return p

Yet we still couldn’t do pow_mod(239418762304, 12349876234, 12394876123482783641) since that
takes the amount of time proportional to a3.

Example 3.10

3Which can become big. . .

12



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Let’s try to compute 337 by hand.

31 ≡ 3 mod 100

32 ≡ 9 mod 100

34 = (32)2 = ≡ 81 mod 100

38 = (34)2 = 812 = 6561 ≡ 61 mod 100

316 = (38)2 ≡ 612 = 3721 ≡ 21 mod 100

332 = (316)2 ≡ 212 = 441 ≡ 41 mod 100

Since 37 = 32 + 4 + 1, we can simply do

337 = 332 · 34 · 31 = 41 · 81 · 3 = 1863 ≡ 63 mod 100

§4 February 4, 2022

§4.1 Fast Powering continued

Example 4.1
Recall: we wanted to compute 337 mod 100

31 ≡ 3 (mod 100)

32 ≡ 9

34 ≡ 81

38 ≡ 61

316 ≡ 21

332 ≡ 41

so we have
37 = 1 + 4 + 32 337 = 31 · 34 · 332 ≡ 3 · 81 · 41 ≡ 63

How might we do this as an algorithm? We want to keep track of a few things, such as g (the current
power), p (the multiple we are building), a (the remaining powers). This is akin to deconstructing
the power in binary and composing our product.

Algorithm 4.2 (Fast Powering Algorithm) —

def pow_mod(a: int, b: int, p: int) −> int:
"""
Computes a^b mod p using repeated squaring.
param a: int
param b: int
param p: int

13



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

return: int a^b mod p
"""
result = 1
while b > 0:

if b & 1:
result = (result ∗ a) % p

a = (a ∗ a) % p
b >>= 1

return result

Example 4.3
37 = 1001012, so we peel off last digits and multiply g into p.

Thinking about iterations, we have

g p a a2
3 1 37 100101

9 3 18 100100

81 3 9 1001

61 43 4 100

21 43 2 10

41 43 1 1

63 0 0

This algorithm takes approximately log2(a) time to run, since it does as many steps for each digit
in the binary representation of a.

§4.2 Fun Integers

Recall: An integer p is prime if p ≥ 2 and

a | p⇒ a = ±1,±p

Proposition 4.4
Let p be prime. Then p | ab⇒ p | a or p | b.

Example 4.5
p is not prime, this doesn’t work. p = 6. p | 4 · 9 = 36 but 6 - 4 and 6 - 9.

14



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Proof. Let g = gcd(p, a). g is either 1 or p.

If g = p, then we have that p = g | a.

If p = 1, we can write this as

1 = g = p · u+ a · v
b = p · ub+ ab · v

since p is a multiple of p and ab is a multiple of p, we have that p | b.

Theorem 4.6 (Fundamental Theorem of Arithmetic)
Any integer a ≥ 1 can be factored into product of primes

a = pe11 · · · p
en
n

and this product of primes is unique up to rearrangement.a

aThis is to say, Z is a UFD!

Example 4.7
Instead of thinking about integers, we think about Z[

√
−5], like

Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z}

Consider
6 = (1 +

√
−5)(1−

√
−5) = 2 · 3

and each of (1 +
√
−5), (1−

√
−5), 2, 3 have no divisors besides themselves and ±1 (units).

Proof. We begin by working out an example:

Example 4.8
Let’s factor 60, we can write this as

60 = 6 · 10 = (2 · 3) · (2 · 5) = 22 · 3 · 5.

What if we had different answers

p1p2 · · · pt = a = q1q2 · · · qs

We have that

p1 | p1 · · · pt = q1 · · · qs
= q1(q2 · · · qs)

15



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

So we have that p1 | q1 or p1 | q2 · · · qs, and we go on. So p1 has to divide one of qi. But both are
primes, so they are equal p1 = qi. We rearrange so qi is q1. We strip off p1 and q1 and we have

p2 · · · pt = q2 · · · qs

we continue until we have no factors left4

Definition 4.9 (Order)
We define the order

ordp(a) = the power of p in the factorization of a

such that we have
a =

∏
p

pordp(a)

(This makes sense since ordp(a) is finite for finitely many p.)

Theorem 4.10 (Fermat’s Little Theorem)
Let p be prime, a ∈ Z/pZ,

ap−1 ≡

{
0 if a ≡ 0

1 otherwise

In abstract algebra, this directly follows from Lagrange’s Theorem for Z/pZ, we give another
argument.

Proof. If a ≡ 0, this is sufficiently clear.

Let a 6≡ 0. We look at the numbers

a, 2a, 3a, . . . , (p− 1)a

We consider 2 questions:

i. Are any of these divisible by p?

No! p - a and p - i so p - ia for 1 ≤ i < p.

ii. Are any of these equal? i.e. ia ≡ ja mod p.

No again! a has an inverse mod p.

4We could also have taken a well-ordering approach to this statement, taking a to be the least such non-uniquely
factorizable number and showing that by peeling off p1 and q1, we get a smaller such a, which is a contradiction.

16



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

So we have that this list is a permutation of {1, 2, . . . , p− 1}, that is,

{1, 2, . . . , p− 1} = {a, 2a, . . . , (p− 1)a} mod p

we multiply these sets together5,

1 · 2 · 3 · · · (p− 1) ≡ a · 2a · · · (p− 1)a mod p

≡ (1 · 2 · · · p− 1)ap−11 · 2 · 3 · (p− 1)(ap−1 − 1) ≡ 0 mod p

=⇒ ap−1 ≡ 1 mod p.

Which is as desired.

§5 February 7, 2022

§5.1 Orders mod p

Recall: If a 6≡ 0 (mod p), then we have ap−1 ≡ 1 (mod p), which was theorem 4.10, Fermat’s Little
Theorem.

Definition 5.1 (Order of a mod p)
The order of a (mod p) is the smallest positive k such that

ak ≡ 1 (mod p)

This is not to be confused with definition 4.9 which is the power of p in the prime factorization
of a. This is the order of a in the multiplicative group Z/pZ.

Proposition 5.2
let a ∈ (Z/pZ)× be of order k. If an ≡ 1 (mod p), then k | n.

In particular, k | p− 1 by theorem 4.10, Fermat’s Little Theorem.

Proof. We write n = k · q + r such that 0 ≤ r < k (Z is a Euclidean domain)

1 ≡ an ≡ akq+r ≡ (ak)q · ar ≡ ar

Since k is the minimal positive number such that ak ≡ 1, then this forces r = 0. Then k | n.

5This is truly a pro-gamer move

17



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Theorem 5.3 (Primitive Root Theorem)
Let p be prime. Then there is a g such that

(Z/pZ)× = {1, g, g2, . . . , gp−2}.

We call g a primitive root or generator.

Example 5.4
p = 5, (Z/5Z)× = {1, 2, 3, 4}.

1? No: {1, 12, 13} = {1}

2? Yes: {1, 2, 22, 23} = {1, 2, 4, 3}

3? Yes: {1, 3, 32, 33} = {1, 3, 4, 2}

4? No: {1, 4, 42, 43} = {1, 4}

Remark 5.5. In general, the number of primitive roots is ϕ(p− 1). (Take the group of exponents and
solve for power).

§5.2 Discrete Logarithm Problem

We go on to discuss a fundamental property about exponentiation mod p. Let’s fix some p and
primitive root g.

Given some a, we can compute ga efficiently

a −→ ga This is easy

a
?←− ga This is hard

Note that
ga ≡ gb ⇔ ga−b ≡ 1⇔ p− 1 | a− b

so a is determined mod p− 1.

Definition 5.6 (Discrete Logarithm)
The discrete logarithm of ga is a.

This is known as the “Discrete Logarithm Problem” (DLP), which is concerned with how we can
compute discrete logarithms.

18



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

This idea is fundamental to computer security! The real-world analogue is if you go to the bank
after hours and deposit a check or cash into the deposit slot. It is relatively easy for one to deposit
an item but hard for someone who doesn’t work at the bank6 to access that item.

§5.3 Cryptographic Systems

§5.3.1 Symmetric Cryptography

We have 3 people, Alice, Bob, and Eve.

Bob has a message m which he wants to send to Alice. However, everything he sends to Alice can
(and is) intercepted by Eve. He wants to encrypt this message m he sends to Alice.

We say that a message m ∈M in the space of possible messages. We have secret key k ∈ K that
can encrypt m into ciphertext c ∈ C in the space of ciphertexts.{

Message m ∈M
Secret key k ∈ K

}
 Ciphertext c ∈ C −→ Alice m

If we fix k, we have

ek(m) = e(k,m)

dk(c) = d(k, c)

be our encryption and decryption functions. We usually take m to be a number, and we can encode
letters to numbers (0-255) using ASCII.

In Python, this is implemented using functions like ord (character to encoding) and chr (encoding
to character).

We’ll just talk about transmitting numbers since we can convert freely between them and text.

Q: What do we want out of our cryptosystem?

0. The system is secure even if Eve knows the design. (Assume Eve knows the encryption and
decryption functions, but so long as she doesn’t know the key).

1. e, the encryption function, is easy to compute.

2. d, the decryption function, is similarly easy to compute.

3. Given c1, c2, . . . a collection of ciphertexts, encrypted with the same key k, it’s hard to
compute any message mi.

6Say, possessing a key or password.

19



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

4. Given (m1, c1), . . . (mn, cn) some collection of messages and their encryptions, it remains
difficult to compute dk(c) for c 6∈ {c1, . . . , cn}. This is called a “chosen plaintext attack”.

§6 February 9, 2022

§6.1 Asymmetric/Public Key Cryptography

The premise is that we have Alice and Bob who are communicating, and Eve intercepts all
communications between them. There is no communication between Alice and Bob ahead of time.
A priori, it’s not entirely obvious that this is possible. . .

We’ll see that this is indeed possible!

Example 6.1
Analogy: Alice and Bob are communicating by writing messages on pieces of paper.

Symmetric cryptography is having a shared safe, Alice and Bob both have the key/know the
combination to, and both can leave messages and retrieve messages.

1. Alice sets up a box with a thin slot with a lock on it. Alice has the key to this lock.

2. Bob is able to deposit messages into the slot in the box, and Alice can retrieve it using
her key.

Our key is now k = (kpriv, kpub) ∈ K = Kpriv ×Kpub which consists of a private key and public key.

Our encryption and decryption functions are now

e : Kpub ×M→ C
d : Kpriv × C →M

d(kpriv, e(kpub,m)) = m

We want it to be easy to compute ekpub and dkpriv , but hard to compute dkpriv only knowing kpub.

Something easier to construct, before a full-fledged public key system, is a key exchange:

§6.2 Diffie-Hellman Key Exchange

Q: How can Alice and Bob agree on a secret key over an insecure channel?

20



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Example 6.2
Analogy: A lockbox that can only be used by one person...and both people have to participate
to set it up.

Both parties have to agree on a key and have a line of communication before agreeing on a key.
This can only be used if both parties are online at the same time.

We start with a prime p and g ∈ (Z/pZ)× suitably. Alice and bob does the following, all mod p:

Alice Bob

Generates a Generates b
↓ ↓

Computes ga Computes gb

Send ga to Bob Send gb to Alice
Computes (gb)a Computes (ga)b

Alice and Bob now know gab, which is the secret key. Eve, however, only knows ga and gb. Alice
and Bob can now use this shared secret gab as a key for symmetric cryptography.

Definition 6.3 (The Diffie-Hellman Problem (DHP))
Given ga, gb, calculate gab.

Remark 6.4. If we can solve the discrete log problem, we can solve the Diffie-Hellman problem.

Vice versa? Can one solve DLP given solution to DHP? This is unknown7.

§6.3 Elgamal Public Key Cryptography

We again start with p prime and g ∈ (Z/pZ)× suitably. This could be public knowledge, or Alice
selects these.

Alice: We have a be Alice’s private key, and A = ga be Alice’s public key.

Bob: Has message m he wishes to send. Bob does the following:

1. Generate random k (used only once, to send this message).

2. Compute the following:
7There is no known method.

21



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

a) c1 = gk mod p

b) c2 = m ·Ak mod p

3. Send c1 and c2 to Alice.

Alice:
(ca1) = Ak so c2 · (ca1)−1 ≡ m

(
(ga)k

)
·
(

(ga)k
)−1
≡ m

Basically, they are using Diffie-Hellman key exchange, except ga is a public key and Bob assumes a
secret key, and uses that to encrypt the message and sends it in one go.

§6.3.1 Implementation

We have the following algorithm for encryption and decryption in Elgamal:

1 import ext_gcd, pow_mod
2 from random import randrange
3 def e(A, m):
4 k = randrange(p)
5 return (pow_mod(g, k, p), m ∗ pow_mod(A, k, p))
6

7 def d(a, c):
8 pow_mod(c[0])
9 ...

to be continued...

§7 February 11, 2022

§7.1 Elgamal continued

Recall: we perform Elgamal by starting with a prime p and g ∈ (Z/pZ)× which is public knowledge.

Alice computes a which is her private key, and A = ga which is her public key.

Encryption: Bob generates a random k and sends Alice

c0 ≡ gk mod p c1 ≡ mAk mod p

Decryption: Alice computes

c1 · (ca0)−1 ≡ m(ga)k
(

(gk)a
)−1

22



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We continue as we did from last time:

1 import ext_gcd, pow_mod
2 from random import randrange
3 def e(A, m):
4 k = randrange(p)
5 return (pow_mod(g, k, p), m ∗ pow_mod(A, k, p))
6

7 def d(a, c):
8 return c[1] ∗ ext_gcd(pow_mod(c[0], a, p), p)[0]

Which works as intended (try it out!).

We note a property of Elgamal that there is an expansion factor of 2. It takes twice as much space
to store c as m. We note that the expansion factor is always at least 1 (otherwise, we wouldn’t be
able to invert it).

§7.2 Midterm Details

Feb 16 @ 2pm in class. If remote, send email.

Topics will include: everything up to now (literally right now).

Focus: More theoretical, less computational. (Both are fair game!)

Resources: Pen/pencil, paper. No notes and no book. Nothing else.

Weighting: 20% Midterm 1 and 30% on Final. 30% Midterm 2, 20% Homework. Half on written
and half on in-class exams.

Problem set #3 which is shorter than #2. (Good practice!)

Midterm results/curve will be announced hopefully by Friday after the midterm.

§7.3 Introduction to Group Theory

Groups are an algebraic structure... they’re sets endowed with an operation.

Example 7.1

23



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We have that (Z/pZ,+) and ((Z/pZ)×, ·) are both groups.

(Z/pZ,+) ((Z/pZ)×, ·)

Identity: 0 + a = a 1 · a = a

Inverse: a+ (−a) = (−a) + a = 0 a · a−1 = a−1 · a = 1

Associative: a+ (b+ c) = (a+ b) + c a · (b · c) = (a · b) · c
Commutative: a+ b = b+ a a · b = b · a

Definition 7.2 (Group)
A group G is a set plus an operation

◦ : G×G→ G

satisfying

1. Identity: There is e ∈ G with e ◦ a = a ◦ e = a.

2. Inverse: For any a ∈ G, there is a−1 ∈ G with

a ◦ a−1 = a−1 ◦ a = e

3. Associativity: a ◦ (b ◦ c) = (a ◦ b) ◦ c

We additionally say G is Abelian if we have

a ◦ b = b ◦ a

Definition 7.3 (Group Order)
The order of G written #G is the number of elements in group G. If the order is finite, we say
G is finite.

Example 7.4
(Z/pZ,+) and ((Z/pZ)×, ·) are both Abelian and finite.

§8 February 14, 2022

§8.1 Groups continued

24



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Example 8.1
Some itemize of groups and nongroups:

• (Z/NZ,+): Yes (Abelian).

• (Z/NZ,×): No. 0−1 does not exist (inverse).

• ((Z/nZ)×,×): Yes (Abelian).

• (Z \ {0},×): No. 2−1 does not exist (inverse).

• (Z \ {0},+): No. No identity e.

• ({n× n matrices : detM 6= 0},×): Yes (not Abelian for n ≥ 2).

Definition 8.2
For g ∈ G, x = 1, 2, 3, . . . ,

gx = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
x times

We extend this to define g0 = e and g−n = (gn)−1 (so that our usual exponent rules also apply).

Example 8.3
From just now, in (Z/NZ,+), 13 = 3.

Definition 8.4 (Element Order)
The smallest (positive) n with gn = e is called the order of g.

If there is no such n, we say g has infinite order.

Proposition 8.5
If G is a finite group, then every element g ∈ G has finite order.

Proof. Consider all powers of g
g, g2, g3, g4, . . .

so at some point, we will have

g, g2, g3, g4, . . . , gi, . . . , gj , . . .

where gi and gj are equal. Then gj−i = e. Hence G has a finite order.

25



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Proposition 8.6
Let g ∈ G have order k, with gn = e. Then k | n.

Proof. We use the division algorithm. We write

n = q · k + r with 0 ≤ r < k

then we have
e = gn = (gk)qgr = eq · gr

so gr = e, which forces r = 0 since 0 ≤ r < k. So n = qk ⇒ k | n.

Theorem 8.7
g#G = e. In particular, ord g | #G.

Proof for Abelian groups. Let G = {g1, . . . , gn} = {gg1, gg2, . . . , ggn}. No two are equal, since we
can take inverse of g. We multiply them all together:

g1g2 · · · gn = (gg1) · · · (ggn)

(((((g1g2 · · · gn = ((((g1 · · · gngn

e = gn

so we have as desired.

This is true even if G is not Abelian - it’s Lagrange’s Theorem, which we won’t cover here8.

Note that our previous cryptosystems: Diffie-Hellman key exchange and Elgamal, works in any
group.

Q: Why would we want to be able to pick our group?

Might we want to do this in a group that allows for fast operations? That makes encryption and
decryption easy, but it also makes computing the discrete log difficult. We want groups that are
easy enough and hard enough. We might appreciate this by the end of the course. . .

§8.2 Computation Complexity

How might we quantify “easy” or “hard” in cryptography.

8Covered in Math 1530, Abstract Algebra.

26



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Example 8.8
Let g ∈ G a group. Let’s consider exponentiation

x 7−→ gx

if x has k bits (i.e. x ≈ 2k). How many steps does it take us to compute gx? At most 2k
multiply and add steps.

What about solving the discrete log problem:

gx 7−→ x

where x has k bits. How many steps does this take (naïvely, trying every power)? About 2k

steps.

Definition 8.9 (Big-O)
We say f(x) = O(g(x)) if there are constants c and c′ with

f(x) ≤ c · g(x) for all x ≥ c′

Example 8.10
Say f(x) = O(1)⇔ f is bounded.

If f(x) = O(xc), then we say this is a “easy” problem.9

If f(x) = O(cx), we think of this as a “hard” problem.

Proposition 8.11
If

lim
x→∞

f(x)

g(x)
<∞

then f(x) = O(g(x)).

Proof. Using definition of limits, for any ε > 0:∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ < ε for x ≥ c

then f(x) < (L+ ε) · g(x).

9We take x to be the number of bits of the input

27



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Example 8.12
2x2 + 5x+ 7 = O(x2).

§9 February 18, 2022

§10 February 23, 2022

§10.1 Chinese Remainder Theorem

Recall: (HW2, Q2) asked us to find x with

x ≡ 3 mod 7

x ≡ 4 mod 9

We solved this by setting

x = 7y + 3 ≡ 4 mod 9

7y ≡ 1 mod 9

and taking 7−1 (mod 9) which is 4. So we have

y ≡ 4 mod 9

x = 7y + 3 ≡ 31 works

Theorem 10.1 (Chinese Remainder Theorem)
Let {mi} be a set of pairwise coprime numbers. That is, gcd(mi,mj) = 1 for i = j. Then the
system

x ≡ a1 mod m1

x ≡ a2 mod m2

...
x ≡ an mod mn

has a solution.

Proof. By induction on n.

Base case. n = 1, then we take x = a1 which is a solution.

28



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Mini inductive step. We first solve for n = 2. We have

x ≡ a1 mod m1

x ≡ a2 mod m2

Let u1 ·m1 + u2 ·m2 = 1 (by Bezout’s identity). Consider quantity

u1m1a2 + u2m2a1 ≡ 0 + 1 · a1 ≡ a1 mod m1

≡ 1 · a2 + 0 ≡ a2 mod m2

which solves for n = 2.

Full inductive step. Let n ≥ 3, we solve equation

x ≡ a mod m1m2 · · ·mn−1

x ≡ an mod mn

where the solution a from the first equation comes from our inductive hypothesis. We can
solve this by our mini inductive step (the n = 2 case).

Which concludes this proof.

Example 10.2
The Chinese Remainder Theorem allows us to solve congruences with composite moduli. For
example, solve

x2 ≡ 18 mod 21

This is equivalent to solving

x2 ≡ 18 = 0 mod 3

x2 ≡ 18 = 4 mod 7

since 21 = 3 · 7. So this is equivalent to solving

x ≡ 0 mod 3

x ≡ ±2 mod 7

Using CRT, we have
1 · 7 + (−2) · 3 = 1

so
x = 0 · 1 · 7 + (−2) · 2 · 2 = −12 ≡ 9 mod 21

we do check that 92 = 81 ≡ 18 mod 21.

In general, we claim that square roots mod p are easy to compute.

29



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Proposition 10.3
Let p ≡ 3 mod 4 and a is a square in Z/pZ (that is, x2 ≡ a has a solution).

Then
x ≡ a

p+1
4

is a solution.

Proof. Say a ≡ b2 mod p. Then

(a
p+1
4 )2 = a

p+1
2 ≡ (b2)

p+1
2 ≡ bp+1 ≡ bp−1 · b2 ≡ 1 · b2 = b2 ≡ a mod p

which concludes the proof.

So we can compute square roots modulo a composite number N by taking the prime factor
decomposition of N , and taking the square root mod each factor, then using CRT.

Conversely, any efficient algorithm to find square roots mod N can be used to factor N .

Why?

1. We generate an element x mod N .

2. Ask for square root of x2.

3. Good chance that we get y 6≡ ±x. We now have

x2 ≡ y2 mod N

(x+ y)(x− y) ≡ 0 mod N

4. We can now calculate gcd(x+ y,N) and find some factors of N .

§10.2 Euler’s Theorem

Recall: Fermat’s Little Theorem which says that

ap−1 ≡ 1 mod p for p - a

What happens when we replace p with N where N is composite?

aN−1
?≡ 1 mod N for gcd(N, a) = 1

No! Recall demo showing counterexample.

30



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Proposition 10.4
If N = pq for primes p and q, then

a(p−1)(q−1) ≡ 1 mod N for gcd(N, a) = 1

Proof. wlog taking mod p, we have

a(p−1)(q−1) ≡ (ap−1)q−1 ≡ 1q−1 ≡ 1 mod p

Similarly mod q by symmetry. Then it is congruent to 1 mod pq.

We can generalize this...

Proposition 10.5 (Euler’s Theorem)
For any composite N , we have

aϕ(N) ≡ 1 mod N for gcd(N, a) = 1

§10.3 Exponentiation

Given an exponent x, we can compute ex fast. Inverting this gives us the Discrete Log Problem.
Diffie-Hellman Key Exchange and Elgamal rely on this.

What if we think of this as a function of the base? Given a base x, we want to take it to exponent e
to get xe. Inverting this is the Extracting Roots problem. This is the basis of the RSA cryptosystem
(see next time!).

Claim — Let gcd(e, p− 1) = 1. We can construct de ≡ 1 mod p− 1. Then (xe)d ≡ x.

So extracting roots is easy mod prime p, but hard mod composites. We’ll see this next time.

§11 February 25, 2022

Recall: Midterm discrete log problem where

x→ xe mod p

and a solution we gave was take (xe)p ≡ x where de ≡ 1 mod (p− 1).

What if we didn’t take this mod p, but instead took it mod pq.

31



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We can take the analog of Fermat’s Little Theorem mod pq, where

a(p−1)(q−1) ≡ 1 mod pq

What if we did the same thing, instead of taking inverse mod p− 1, we took it mod (p− 1)(q − 1)
to extract eth roots if we know (p− 1)(q − 1).

We know p and q, we can easily figure out (p− 1)(q − 1). Also, if we know (p− 1)(q − 1), we also
know

pq − p− q + 1

We know that pq = x and p+ q = y, then pq are roots of t2 − yt+ x = 0.

§11.1 RSA Public-Key Cryptography

Alice generates

p, q → Two large prime numbers
e→ “Public exponent”

N = pq → “Public modulo”

(e,N) → Public key

(d,N)→ Private key
where d · e ≡ 1 mod (p− 1)(q − 1)

Bob has some message m he wishes to send to Alice. Bob sends me mod N and sends it to Alice.

After receiving this message, Alice can recover (me)d ≡ m mod N .

p, q are private, but pq is private. The security of RSA rests on multiplication being easy, but
factorization being hard (pq is hard to factorize into p and q).

We might implement such an algorithm like so:

1 from crypto import gcd, ext_gcd, pow_mod
2 N = p ∗ q
3 d = ext_gcd(e, (p−1) ∗ (q−1))[0] % ((p−1) ∗ (q−1))
4 m = 1234567891234786951234010239847123748
5 # 0 < m < N is True
6 c = pow_mod(m, e, N)
7 pow_mod(c, d, N) # => m

If we were Alice and Bob, we still have one step to go! We need to find ourselves big prime numbers
p, q (finding e is easy, we can just use our gcd algorithm). How do we do that?

32



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§11.2 Primality Testing

Prime hunting!

Prime numbers are reasonably common. So generating a large prime number amounts to generating
a number, checking if it’s prime, and repeating until we get a prime.

This reduces to the problem of checking if a number is prime. Given an n, is it a prime?

1 from crypto import pow_mod
2 n = 123874610239487102893741890237023
3 pow_mod(2, n−1, n)

gives us a basic primality check. Fermat’s Little Theorem says that if n is prime, then 2p−1 ≡ 1
mod n.

Definition 11.1 (Witnesses)
We say that a is a witness for the compositeness of n if

an−1 6≡ 1 mod n

and gcd(a, n) = 1.

We have a problem! Fermat’s Little Theorem is not an if-and-only-if. We can have numbers that
pass this test for almost every base. Take n = 3 · 11 · 17 = 561.

1 from crypto import pow_mod, gcd
2 for a in range(n):
3 if gcd(a, n) == 1:
4 print(pow_mod(a, n−1, n))

gives 1 for everything10

Definition 11.2 (Carmichael Number)
A Carmichael number is a composite number with no witness of compositeness.

Example 11.3
561 is a Carmichael Number.

We now almost have a way of checking for primality, but it doesn’t always quite work.

10oh no!

33



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Since taking to the power of n− 1 is a group homomorphism, then Lagrange’s Theorem states that
if there is a witness, then there are a lot of witnesses.

Proposition 11.4
Let p be an odd prime. Write

p− 1 = 2k · q with q-odd

Then either
aq ≡ 1 mod p

or one of aq, a2q, a4q, . . . , a2k−1q is ≡ −1 mod p.

Proof. We look at this sequence

aq, a2q, a4q, . . . , a2
iq︸︷︷︸

6≡1 (mod p)

, a2
i+1q︸ ︷︷ ︸

≡1 (mod p)

, . . . , a2
k−1q, a2

kq

We have that a2kq ≡ 1 mod p by Fermat’s Little Theorem. There’s some point where we ‘become’
congruent to 1 mod p. If the first one is one, then we have the first case. Otherwise we have
aq 6≡ 1 mod p, then we repeatedly square until we get to 1 mod p. Then right before we turned to
1 mod p, we would have had −1 mod p. In our example above, this is a2iq.

§12 February 28, 2022

§12.1 Miller-Rabin Primality Test

Recall proposition 11.4 from last class.

Proposition
Let p be an odd prime. Write

p− 1 = 2k · q with q-odd

Then either
aq ≡ 1 mod p

or one of aq, a2q, a4q, . . . , a2k−1q is ≡ −1 mod p.

34



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

For 561, we write 561 = 24 · 35.

235 ≡ 263 (mod 561)

270 ≡ 166 (mod 561)

2140 ≡ 67 (mod 561)

2280 ≡ 1 (mod 561)

using the following code. . .

1 from crypto import pow_mod
2

3 pow_mod(2, 35) # 263
4 263 ∗∗ 2 % 561 # 166
5 166 ∗∗ 2 % 561 # 67
6 67 ∗∗ 2 % 561 # 1

Definition 12.1 (Miller-Rabin Witness)
a is a Miller-Rabin witness if a does not satisfy above proposition.

Theorem 12.2
If n is composite, then at at least 75% of a ∈ (Z/nZ) are Miller-Rabin witnesses.

Proof. Given on faith.

Algorithm 12.3 (Miller-Rabin Probabilistic Primality Test) —

from random import randrange
from crypto import pow_mod

def miller_rabin(n, a):
"""
Miller−Rabin primality test on number n and base a
"""
q, k = n − 1, 0
# Write n− 1 = 2k · q
while q % 2 == 0:

k = k + 1
q = q // 2

a = pow_mod(a, q, n)
if a == 1 or a == n − 1:

return False
for _ in range(k − 1):

a = a ∗∗ 2 % n
if a == n − 1:

return False
return True

35



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

def is_prime(n):
for _ in range(50):

if miller_rabin(n, randrange(1, n)):
return False

return True

Using this, we can find large prime numbers using

1 from crypto import miller_rabin, is_prime
2 def next_prime(n):
3 while not is_prime(n):
4 n = n + 1
5 return n

Theorem 12.4 (Prime Number Theorem)
Probability that n is prime is about

1

log(n)

More formally,

lim
x→∞

# of primes ≤ x
x/ log x

= 1

So the Miller-Rabin test lets us efficiently find (large) prime numbers.

§13 March 7, 2022

§13.1 Pollard’s p− 1 Method

Recall: the Pollard’s p− 1 method from last time. Let

N = p · q

p− 1 | n!

q − 1 - n!
→ gcd(N, an! − 1) = p

1 from pollard import ∗
2

3 def factor(N):
4 # Naive, brute force factoring algorithm.
5 i = 2
6 while N % i != 0:
7 i += 1
8 return i

36



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

9

10 def factor(N, a=2):
11 # Pollard’s method
12 i = 1
13 while gcd(a − 1, N) == 1:
14 i += 1
15 a = pow_mod(a, i, N)
16 return gcd(a − 1, N)

This algorithm is significantly faster than random guesses. By how much? We can formalize this
intuition of size of prime factors:

Definition 13.1
We say n is B-smooth if all prime factors are ≤ B. We define

Ψ(X,B) = # of B-smooth n ≤ X.

Theorem 13.2
Let X,B increase together. Suppose

(logX)ε ≤ logB ≤ (logX)1−ε

Then
Ψ(X,B)

X
= u−u·(1+o(1)) where u =

logX

logB
.

What is o(1)?

Definition 13.3
Say f(x) = o(g(x)) if

lim
x→∞

f(x)

g(x)
= 0

So “o(1)” is to mean something whose limit is 0. This is in contrast to O(1) which means something
whose limit is finite.

For our purposes, we say that the probability X is B-smooth is ≈ u−u where u = logX
logB .

What if we do Pollard p− 1 for e
√
log p steps? The probability of success is then√

log p
−
√
log p
≈ e−

1
2
log log p·

√
log p � p−ε

By brute force, doing pε steps gives a probability of success ≈ pε−1.

37



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§13.2 Quadratic Sieve

Goal: find a, b with a2 ≡ b2 (mod N = pq), hence (a− b)(a+ b) ≡ 0 mod N . gcd(a+ b,N) will
allow us to recover p or q with decent probability.

Example 13.4
For example, if

(b
√
Nc+ 1)2 ≡ (b

√
Nc+ 1)2 −N = 21 · 31

(b
√
Nc+ 2)2 ≡ (b

√
Nc+ 2)2 −N = (not smooth)

(b
√
Nc+ 3)2 ≡ (b

√
Nc+ 3)2 −N = 22 · 31

(b
√
Nc+ 4)2 ≡ (b

√
Nc+ 4)2 −N = 21 · 32

...

then we have [
(b
√
Nc+ 1)3

]2
≡
[
(b
√
Nc+ 3)(b

√
Nc+ 4)

]2
Which comes from the fact that the exponent vectors[

1

1

]
,

[
2

1

]
,

[
1

2

]
are linearly dependent. We can take these mod 2 (the parity) since we square. We can also
rewrite this asa [

(b
√
Nc+ 1)(b

√
Nc+ 3)(b

√
Nc+ 4)

]2
≡
(
22 · 32

)2
aUsing the definition of linear dependence

So we can do the following steps:

1. Pick smoothness bound B.

2. Find integers
(b
√
Nc+ i)2 −N

that are B smooth.

3. Find linear relationship between exponent vectors. Then we get a congruence a2 ≡ b2 (mod N)
after which we can try to find factors of N .

§14 March 9, 2022

***(missed?)

38



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§15 March 11, 2022

§15.1 Quadratic Sieve continued

We resume our discussion of the example of example 13.4. We want to find an optimal B for the
algorithm, and we do this by analyzing runtimes.

The runtime of X is first approximately B · uu where

u =
log
√
N

logB
.

And in addition, solving a B ·B system of linear equations. It takes B2 operations to zero out one
column (B rows and subtracting a column takes B operations), then we do this for B columns. So
the runtime is B3.

We now have uu is decreasing in B and B3 is increasing in B. Minimizing the runtime, we set
B3 ∼ B · uu, i.e. B2 ∼ uu. Using very sketchy mathematics,

uu ∼ B
u log u ∼ B

logN

logB
∼ u ∼ B

logB ∼
√

logN

B ∼ e
√
logN

u ∼ log
√
N

logB
∼ logN

logB
∼
√

logN

is a loose guess. But we can use this to make a more approximate guess.

Being more rigorous, uu = B2 gives u log u = 2 logB. Then using our estimate for u from above,
we have

u · log
[√

logN
]

= 2 logB

1

2

1
2 logN

logB
log logN =

1

2
u log logN = 2 logB

(logB)2 =
1

8
logN log logN

⇒ B ∼ e
√

1
8
logN log logN

where we note the difference of a factor of 1
8 log logN isn’t that far off from e

√
logN . So total runtime

is around B3 which is e
√

9
8
logN log logN . It’s not super fast but not totally stupid.

39



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Realistically, the B3 can be reduced to B2 in solving our B ×B system, but we can get rid of our
factors of 2’s from before. This lets us get rid of the factor of 9

8 so our total runtime is like

e
√
logN log logN

There are even faster algorithms, namely the number field sieve. It replaces the square root from
above into a cube root and has runtime

e
3
√
c·logN(log logN)2

§15.2 Index Calculus & Discrete Logs

The discrete log problem is solving x given gx = a and we know g and a. We can do a similar
strategy to the quadratic sieve. We calculate

g1 (mod p) = 2

g2 (mod p) = (not smooth)

g3 (mod p) = 2 · 3

where we pick some smoothness bound B. We then find gi ≡ (B-smooth) mod p. We find enough
B smooth things such that by linear algebra, we can solve gx = 2, 3, 5, 7, . . . .

We take

a mod p = (not smooth)

a · g−1 mod p = (not smooth)

a · g−2 mod p = 3

which is smooth. So we find a · g−i ≡ (B-smooth) mod p. Then by linear algebra we can solve for
a given lots of smooth gi.

Question. What is the runtime of this?

We need to go up to gx where x is about B · uu (uu is the probability of being B-smooth). Linear
algebra will take runtime B2. Similar to just now, this is exactly the same problem as above except√
N is replaced with P . Before (in the quadratic sieve), we had

B ∼ exp

(
1

4
logN log logN

)
and

Runtime ∼ exp (logN log logN)

Replacing logN with 2 logP , our bound becomes

B ∼ exp

(
1

2
log p log log p

)

40



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Runtime ∼ exp (2 log p log log p)

What if g ∈ subgroup of order q? Babystep-Giantstep changes from √p to √q. With index calculus,
there is no advantage of knowing that g is im a smaller subgroup. We don’t have a decrease in
runtime.

§16 March 14, 2022

§16.1 Elliptic Curves

An elliptic curve is an equation of the form

y2 = x3 + ax+ b

It looks like this:

What’s special about cubic equations? We have a special property that every line L meets E in 3
points.

What happens when we have a tangential line? We count multiplicity.

What happens when it only meets at 1 or 2 points? We count complex roots.

What happens with vertical lines that only meet at 2 points? We include O = “point at ∞”.

Where does O come from? It comes from the RP2 (the real projective plane) or CP2 (the complex
projective plane).

Given two points A and B, we can get a third point C which is the third point on the line passing
through A and B. Taking this as a binary operation...does this give us a group?

41



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Consider:

A+B = C

A+ C = B

A+A = O?

Maybe we can declare
A+B + C = O

If we call the reflection of C across the x-axis is D, we have

A+B + C = O
C +D +O = O

A+B = D

So we have that the group law is A + B is the reflection of the third point C across the x-
axis.

Definition 16.1 (Elliptic Curve)
An elliptic curve is the set of solutions to

y2 = x3 + ax+ b

plus a point O at infinity...where a, b satisfy 4a3 + 27b2 6= 0.

Recall from high school that ax2 + bx+ c gives discriminant ∆ = b2 − 4ac. Taking a cubic equation
x3 +ax+ b, the discriminant is ∆ = −16(4a3 + 27b2). This is also saying x3 +ax+ b has no repeated
roots. For it to be tangent to the x-axis, it has to self-intersect. But every line passing through the
intersection is a tangent line. Messy messy things happen:

We take the fact that an elliptic curve is a group on faith, with the group operation defined above.

42



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§16.2 Addition on Elliptic Curves

• P +O = O + P = P . That is, O is the identity.

• If for points P1 = (x1, y1), P2 = (x2, y2) and x1 = x2, y1 = −y2. Then P1 + P2 = O.

• If P1 6= P2, λ = Slope of L = y2−y1
x2−x1 . So the equation of L is y − y1 = λ(x− x1). (We find the

third point and reflect it). Will pick up here on Wednesday.

§17 March 16, 2022

§17.1 Addition on Elliptic Curves continued

We said last time that we had some rules:

• P +O = O + P = P .

• If x1 = x2 and y1 = −y2, we have
P1 + P2 = O

• In other cases, we need to calculate the slope of the line.

If P1 6= P2, the slope of L is
λ =

y2 − y1
x2 − x1

43



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

If P1 = P2, then the slope would be the tangent:

y2 = x3 + ax+ b

2y · dy = (3x2 + a) · dx
dy

dx
=

3x2 + a

2y

so we have

λ =
3x2 + a

2y

We want to solve systems {
y2 = x3 + ax+ b

y = y1 + λ(x− x1)

which gives us

[y1 + λ(x− x1)]2 = x3 + ax+ b

0 = x3 − λ2 x2 + (a+ 2λ1x1)x+ b− y1 − λx21
= (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3) x
2 + (x1x3 + x2x3 + x1x2)x− x1x2x3

With some working out (taking the coefficient of x2),

x3 = λ2 − x1 − x2

and −y3 = y1 + λ(x3 − x1) so we have

y3 = −y1 − λ(x3 − x1)

are our points by addition where
λ =

y2 − y1
x2 − x1

44



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

or when P1 = P2,

λ =
3x21 + a

2y1
.

§17.2 Elliptic Curves over Finite Fields

Our definition stays the same, except x, y are elements of Z/pZ. How do we add points? We could
do it geometrically, but setting this up is outside the scope of this class. . .

For addition, we use the same formulas that we’ve derived for x3 and y3, and they still make perfect
sense mod p. For whatever reasonable notion of geometry we have over Z/pZ, they work with these
formulas.

Example 17.1
We take elliptic curve

y2 = x3 + x+ 2 over Z/5Z.

How do we find elements in this elliptic curve? We can try them all.

• If x = 0, y2 = 2, of which there are no solutions.

• If x = 1, y2 = 4, of which y = 2, 3 are solutions.

• If x = 2, y2 = 2 again, of which there are no solutions.

• If x = 3, y2 = 2, of which there are no solutions.

• If x = 4, y2 = 0, so y = 0 is one solution.

We have (1, 2), (1, 3), (4, 0),O are the elements of this elliptic curve. We have these

+ O (1, 2) (4, 0) (1, 3)

O O (1, 2) (4, 0) (1, 3)

(1, 2) (1, 2) (4, 0) (1, 3) O
(4, 0) (4, 0) (1, 3) O (1, 2)

(1, 3) (1, 3) O (1, 2) (4, 0)

Let’s implement this:

1 O = "the point O"
2 def add(P1, P2, a, p):
3 if P1 == O:
4 return P2
5 if P2 == O:
6 return P1
7 x1, y1 = P1

45



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

8 x2, y2 = P2
9 if x1 == x2 and (y1 + y2) % p == 0:

10 return O
11 if P1 == P2:
12 lam = (3 ∗ x1∗∗2 + a) ∗ ext_gcd(2 ∗ y1, p)[0] % p
13 else:
14 lam = (y2 − y1) ∗ ext_gcd(x2 − x1, p)[0] % p
15 x3 = (lam∗∗2 − x1 − x2) % p
16 y3 = (lam ∗ (x1 − x3) − y1) % p
17 return x3, y3

§18 March 18, 2022

§18.1 Elliptic Curves over Finite Fields continued

Recall: from last class, we had our toy example

Example
We take elliptic curve

y2 = x3 + x+ 2 over Z/5Z.

with group law
+ O (1, 2) (4, 0) (1, 3)

O O (1, 2) (4, 0) (1, 3)

(1, 2) (1, 2) (4, 0) (1, 3) O
(4, 0) (4, 0) (1, 3) O (1, 2)

(1, 3) (1, 3) O (1, 2) (4, 0)

We define some more useful functions:

1 def minus(P, p):
2 if P == O:
3 return O
4 else:
5 x, y = P
6 return (x, (−y) % p)

What about multiplication? We can repeatedly add:

1 def multiply(P, n, a, p):
2 S = O
3 for _ in range(n):
4 S = add(P, S, a, p)
5 return S

46



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

but this might be very slow (it does n iterations). We can do something similar to fast powering for
exponentiation, except we repeatedly double our point:

1 def multiply(P, n, a, p):
2 S = 0
3 while n != 0:
4 if n % 2 == 1:
5 S = add(S, P, a, p)
6 n = n // 2
7 P = add(P, P, a, p)
8 return S

Question. What is the order of E(Fp)? That is, how many points are there on the elliptic curve?

Let’s say we take x, y, . . . . We want to solve

y2
?
= x3 + ax+ b

There are p2 different (x, y). The probability that this equality holds is like 1
p . So there are about

p2 · 1p + 1 ≈ p+ 1 (added one for the point O) elements in E(Fp).

Theorem 18.1

|(p+ 1)−#E(Fp)| ≤ 2
√
p.

That is, the difference between our estimate p+ 1 and the actual number of points in E(Fp) is
bounded by 2

√
p.

Proof. (Beyond the scope of this class.)

Remark 18.2.

1. We note that this number can be efficiently computed (in polynomial time in the digits of p).
(Again, beyond the scope of this class.)

2. We call this number |(p+ 1)−#E(Fp)| the trace of Frobenius. (You guessed it: again, beyond
the scope of this class.)

Just for funsies, we can compute the trace of Frobenius11:

1 p = next_prime(92834712736591432)
2 E = EllipticCurve([34123498, GF(p)(2349182347)])
3 E.trace_of_frobenius()

11Using Sage.

47



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§18.2 Elliptic Diffe-Hellman Key Exchange

§18.2.1 Elliptic Discrete Log Problem

This is based on the Elliptic Discrete Log Problem: Given E an elliptic curve over Fp with P a
point on E. We take P, n and calculate

n · P

The elliptic curve discrete log problem is given point n · P , computing n.

The best known algorithm for ECDLP is Babystep-Giantstep, which runs in O(
√
p) and O(

√
p)

memory. There is no analog of index calculus. This could be good or bad... This could mean a lack
of knowledge about elliptic curves. We could also create greater security at smaller key sizes.

§18.2.2 Sharing Secrets

Public information: we have some p prime and E an elliptic curve over Fp. We have P a point in
the elliptic curve E.

Alice and Bob do the following:

1. Alice and Bob each generate a and b. Alice computes a · P and Bob computes b · P . This is
shared to each other (and public).

2. Alice now computes a · (b · P ) and Bob computes b · (a · P ). These are all equal to (a · b) · P
which is a shared secret.

§19 March 21, 2022

§19.1 Elliptic Curve Elgamal

As usual, we have some public knowledge, private key, and public key. The idea is to replace
multiplication in F×p with addition on E.

Public Knowledge:
p — prime.
E — elliptic curve over Fp.
P ∈ E(Fp) — point.

Private Key:
n — private key.

48



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Public Key:
Q = n · P — public key.

Encrpytion:
Bob has a message M ∈ E(Fp).

1. Choose random k.

2. Compute

C1 = k · P
C2 = M + k ·Q

Send (C1, C2) to Alice.

Decryption:
Alice will compute

C2 − n · C1 = M + k ·Q− nk · P = M

We now implement this:

1 from ec import ext_gcd, add, minus, multiply
2

3 # Private key for Alice
4 n = randrange(q)
5

6 # Public key for Alice
7 Q = multiply(P, n, a, p)
8

9 def e(Q, M):
10 """Encryption Function"""
11 k = randrange(q)
12 c1 = multiply(P, k, a, p)
13 c2 = add(M, multiply(Q, k, a, p), a, p)
14 return (c1, c2)
15

16 def d(n, C):
17 """Decryption Function"""
18 c1, c2 = C
19 return add(c2, minus(multiply(c1, n, a, p), p), a, p)

The expansion factor is 2. Even if we think of putting our message into only the x coordinate, the
y coordinate is determined by the x coordinate so the factor is still 2.

§19.2 Elliptic Curve DSA

Since we have Elgamal, we can also have DSA with Elliptic Curves.

49



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Public Knowledge & Public Key:
Same as Elgamal
p — prime.
E — elliptic curve over Fp.
Q = n · P — public key.

Private Key:
n — private key.

Signing:
Alice has document d ∈ Z/qZ.

1. Choose random k.

2. Compute (x, y) = k · P .

s1 = x

s2 = (d+ ns1) · k−1 (mod q)

Verification:
We can verify the signature as follows:

v1 = d · s−12 (mod q)

v2 = s1s
−1
2 (mod q)

v1 · P + v2 ·Q = ds−12 · P + s1s
−1
2 k · P

= (d+ s1n)s−12 P

= kP

(x-coord of v1P + v2Q) = s1 check to verify signature.

Again, we can implement this:

1 from ec import ∗
2

3 def sign(n, d):
4 """Signing document d with private key n"""
5 k = randrange(q)
6 x, _ = multiply(P, k, a, p)
7 s1 = x
8 s2 = ((d + n ∗ s1) ∗ ext_gcd(k, q)[0]) % q
9 return (s1, s2)

10

11 def verify(Q, d, s):
12 """Verifies document d’s signature s with public key Q"""
13 s1, s2 = s

50



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

14 v1 = (d ∗ ext_gcd(s2, q)[0]) % q
15 v2 = (s1 ∗ ext_gcd(s2, q)[0]) % q
16 return add(multiply(P, v1, a, p), multiply(Q, v2, a, p), a, p)[0] == s1

Remark 19.1. The specific numbers used in lecture is the elliptic curve used in the Bitcoin blockchain.
Being able to forge signatures in this elliptic curve is to topple the Bitcoin market.

§20 March 23, 2022

§20.1 Elliptic Curve Factorization

Recall: Pollard p− 1 method.

The idea to factor N was we take a ∈ (Z/NZ)× and we compute gcd(N, an! − 1) where (p− 1) | n!
but (q − 1) - n!.

The idea for elliptic curves is to take P ∈ E(Z/NZ) and we calculate n! · P .

Let’s first fix our code for composite N :

1 def invert(a, n):
2 if gcd(a, n) == 1:
3 return ext_gcd(a, n)[0]
4 else:
5 print("OH NO!!!!!", gcd(a, n))
6

7 def add(P1, P2, a, p):
8 if P1 == O:
9 return P2

10 if P2 == O:
11 return P1
12 x1, y1 = P1
13 x2, y2 = P2
14 if x1 == x2 and (y1 + y2) % p == 0:
15 return O
16 if P1 == P2:
17 lam = (3 ∗ x1∗∗2 + a) ∗ invert(2 ∗ y1, p) % p
18 else:
19 lam = (y2 − y1) ∗ invert(x2 − x1, p) % p
20 x3 = (lam∗∗2 − x1 − x2) % p
21 y3 = (lam ∗ (x1 − x3) − y1) % p
22 return x3, y3

Example 20.1

51



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We use elliptic curve E : y2 = x3 + 3x+ 7 mod 187. We calculate

5 · (38, 112)

which fails, since we weren’t able to find the inverse of something mod 187 which wasn’t coprime.
However, we figured out a factor of 187, which is what we wanted. We found 11 which is a
prime factor of 187.

We can, however, do this modulo each of the prime factors of 187, 11 and 17. We find that

5 · (38, 112) = O in F11

5 · (38, 112) = (13, 13) in F17

What happened was that we got O mod 11 and got not O mod 17.

In the elliptic curve method, we win if #E(Fp) | n! but #E(Fq) - n! and so

n! · P = O (mod p)

6= O (mod q)

We have #F×p = p− 1 ≈ p and #E(Fp) ≈ p, so we have about the same ‘chance of winning’.

Question. What is the probability of success per unit time?

We calculate n! · P takes about n log n ≈ n time. The probability of success is u−u where u = log p
logn .

So the probability of success per unit time if 1
n·uu .

What minimizes n · uu? When n ≈ uu.

Our crude estimate is about

log n ≈ u log u ≈ u =
log p

log n

(log n)2 ≈ log p

n ≈ e
√
log p

and our refined estimation is about

log n ≈ u log u ≈ u log

(
log p√
log p

)
≈ 1

2
log log p · log p

log n

n ≈ e
√

1
2
log p log log p

so our probability of success per unit time is

≈ 1

n · uu
≈ 1

n2
≈ e−

√
2 log p log log p

52



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

With Pollard’s p− 1 method, our probability of success will increase then decrease. With the elliptic
curve method, we can optimize our probability of success by simply picking a new elliptic curve at
the same n.

This is the best known method for finding small prime factors. The runtime depends on the size of
the prime factor we’re trying to find instead of the number itself.

§21 March 25, 2022

§21.1 Quantum Computation

Warm-up: Deutch’s Algorithm

Setup: We have a function f : {0, 1} → {0, 1}. We note there are 4 possibilities for functions f .
Let’s say we have a black box that takes x and computes f(x), taking an hour to run.

Our question is “is f constant”? Does f(0) = f(1)?

Classically, the fastest algorithm takes 2 hours. We pass in 0 and then pass in 1 and check if they
are equal.

At the end, we know f(0)
?
= f(1). But we know more! We know exactly what f(0) and f(1) are.

Quantum Reformulation: we can manipulte quantum states. We consider the simplest system, an
electron e−. An electron has a property called spin: which can be in one of two states:

|↑〉 , |↓〉

which we notate 0 and 1.

Remark. The state of the system is not a “probabilistic classical state”.. It’s not represented as

a · |↑〉+ b · |↓〉

where a, b are positive reals with a+ b = 1.

The actual state of our machine is
a · |↑〉+ b · |↓〉

where a, b ∈ C where |a|2 + |b|2 = 1. The probability of measuring |↑〉 is |a|2 and |↓〉 is |b|2.

Example 21.1
The typical experiment for this is the light passing through two slits:

53



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We’ll run black box again with quantum mechanics - except we only run it once and don’t require
the knowledge of what f(0) and f(1) actually are.

The laws of quantum mechanics are time symmetric. Thus,

f :

{
0 7→ 0

1 7→ 0

cannot exist in a quantum computer since it’s not invertible. How do we encapsulate our function
to be run in a quantum computer?

We define a new function
F (x, y) = (x, f(x) + y mod 2)

F and f encode exactly the same information. But F is defined in a way such that it fits on a
quantum computer since it’s an invertible function. Classically, it makes no difference having a box
that computes F or a box that computes f . Computing one gives us the other.

§21.1.1 Deutch’s Problem

Given a quantum black box for F . Can we determine whether f(0) = f(1)?

The idea is that we feed in x and y as superpositions between 0 and 1 and exploit cancellation. We
evaluate

F

(
1√
2
|0〉+

1√
2
|1〉 , 1√

2
|0〉 − 1√

2
|1〉
)

=
1

2
|0〉 ⊗ |f(0)〉 − 1

2
|0〉 ⊗ |f(0) + 1〉+

1

2
|1〉 ⊗ |f(1)〉 − 1

2
|1〉 ⊗ |f(1) + 1〉

=
1

2

(
(−1)f(0) |0〉+ (−1)f(1) |1〉

)
⊗ (|0〉 − |1〉)

What if I measure the first register? We get 50% chance of |0〉 and 50% chance of |1〉 and we gain
no information.

54



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Graphing this, we have 4 states (1, 1), (−1,−1), (1,−1), and (−1, 1). Applying a rotation matrix(
1√
2

1√
2

− 1√
2

1√
2

)

we get states on the axes. So we get |1〉 if f(0) = f(1) and |0〉 if f(0) 6= f(1).

§22 April 4, 2022

§22.1 Quantum Computing continued

Recall: Deutch’s Algorithm. Given black box that implements f : {0, 1} → {0, 1}. We define
F : {0, 1}2 → {0, 1}2 via F (x, y) = (x, f(x) + y (mod 2)).

The problem was to determine whether f(0)
?
= f(1). Our solution was to compute F on a

superposition of two states.

F

(
1√
2
|0〉+

1√
2
|0〉 , 1√

2
|0〉 − 1√

2
|0〉
)

=
1

2

(
(−1)f(0) |0〉+ (−1)f(1) |1〉

)
⊗ (|0〉 − |1〉)

where we apply a rotation to the possible outcomes. Our key transformation is

(x, y) 7→
(

1√
2
x+

1√
2
y,

1√
2
x− 1√

2
y

)
which is a rotation by 45◦.

We discuss a generalization of this which is the Discrete Fourier transformation.

Definition 22.1 (Discrete Fourier Transform)
Given x1, x2, . . . , xN , the Discrete Fourier Transform (DFT) is a new sequence y1, y2, . . . , yN
defined via:

yk =
1√
N

∑
j

e−
2πi
N
·jkxj

Note that this is the discrete analog of the ordinary Fourier Transform:

f(x) f̂(y) =

∫
e2πixyf(x) dx

Example 22.2

55



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

For N = 2, we have x1, x2 so

y1 =
1√
2
x1 +

1√
2
x2

y2 =
1√
2
x1 −

1√
2
x2

we note that these are efficiently computable in the quantum setting.

§22.2 Shor’s Algorithm

Question. Given a black box that implements a function f : Z → X (assumed to be periodic).
What is the period of f?

This is to say, we’re promised that f(x) = f(x+ n) for some n, we are tasked to find n.

Classically, we take
f(1), f(2), . . . , f(n+ 1)

where f(n+ 1) = f(1). The runtime is O(n).

We try to solve this using a quantum algorithm:

1. Choose N large power of 2 (we want N = O(n2)).

2. Prepare the state
1√
N

N∑
j=1

|j〉 ⊗ |f(j)〉 .

3. Apply DFT to first register. That is,

1

N

∑
k,x

 ∑
j:f(j)=x

e−
2πi
N
jk

 |k〉 ⊕ |x〉
4. Measure first register.

How big is this sum? ∑
j:f(j)=x

e−
2πi
N
jk

We note that this sum∑
j:f(j)=x

e−
2πi
N
jk ≈

∑
j:f(j)=x

e−
2πi
N

(j+n)k = e−
2πink
N ·

∑
j:f(j)=x

e−
2πi
N
jk

56



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

therefore ∑
j:f(j)=x

e−
2πi
N
jk ≈ 0 unless e−

2πink
N ≈ 1 ⇐⇒ nk is close to a multiple of N

This is to say, k is approximately a multiple of Nn . So we get N
n out of this register.

Why might I get a multiple?

Example 22.3
Consider sequence

0, 1, 0, 1, 0, 1, 0, 0 , 0, 1, 0, 1, 0, 1, 0, 0, , 0, 1, 0, 1, 0, 1, 0, 0, . . .

where the period is 8. We’ll usually get ≈ N
period unless there is a smaller “almost-period” where

we might get N
almost-period but the almost-period divides the period.

The runtime of this algorithm is ≈ log n.

§22.3 Breaking Encryption

§22.3.1 Integer Factorization

We’re given N = pq. We pick x ∈ Z/NZ and consider the function f(j) = xj (mod N). Applying
Shor’s Algorithm, we can determine the period of f , which is the order of x, which is a factor of
(p− 1)(q − 1). More precisely, (p−1)(q−1)

something small . We recover (p− 1)(q − 1) and we can factor N easily.
This is bad news for RSA!

§22.3.2 Quantum Elgamal/DLP

We have some group G and g ∈ G where we want to recover k from x = gk.

Consider function f(a, b) = xa · g−b (we do a 2-dimensional DFT). f(a, b) = f(a + 1, b + k). So
(1, k) is the period of f . This solves the discrete log problem in any group!

§23 April 6, 2022

§23.1 Lattices and Cryptography

The advantage of lattice based cryptography is that they are quantum resistant.

57



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We’ll use a toy example as a warm-up12.

Example 23.1
Suppose we have some q that is public knowledge (any integer).

Alice will choose reasonably small numbers f, g

0 < f <

√
q

2√
q

4
< g <

√
q

2

which will constitute her private keys. She’ll compute h = f−1 · g (mod q) which will be her
public key. We’ll assume that f, g, q are all pairwise relatively prime.

Bob, encrypting message m, satisfying 0 < m <
√

q
4 :

1. Choose random r with 0 < r <
√

q
2 .

2. Compute ciphertext c = r · h+m (mod q) to send to Alice.

Alice, to decrypt the message, will do the following:

1. Calculate a ≡ f · c (mod q).

2. Calculate b ≡ f−1a (mod g).

Why does this work?

a ≡ f · c ≡ f(r · h+m) ≡ f(r · f−1 · g +m)

≡ r · g + f ·m

and we rely on the fact that r · g + f ·m < q since

0 < rg + fm <

√
q

2

√
q

2
+

√
q

2

√
q

4
≤ q

Thus a ≡ rg + fm (exactly!). Then b ≡ f−1a ≡ f−1(rg + fm) (mod g) ≡ m (mod g).
m <

√
q
4 < g thus b = m exactly.

We can implement this in code (again):

1 from gcd import ∗
2

12This isn’t even secure classically.

58



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

3 q = 320984712309487123509238471251
4

5 while True:
6 f = randrange(int(sqrt(q/2)))
7 g = randrange(int(sqrt(q/4))+ 1, int(sqrt(q/2)))
8 if gcd(f, g) == 1 and gcd(f, q) == 1:
9 break

10

11 h = (ext_gcd(f, q)[0] ∗ g) % q
12

13 def e(m):
14 r = randrange(sqrt(q/2))
15 c = (r ∗ h + m) % q
16 return c
17

18 def d(c):
19 a = (f ∗ c) % q
20 b = (ext_gcd(f, g)[0] ∗ a) % g
21 return b

Question. What does Eve need to do?

Eve knows q, h and wants to figure out f, g with f · h ≡ g (mod q) and f, g small (O(
√
q)).

We write this as a vector equation:

f ·
(

1

h

)
− r ·

(
0

q

)
︸︷︷︸
V1

=

(
f

g

)
︸︷︷︸
V2

where f, r are unknown integers and
(
f

g

)
is an unknown vector. The known vectors are on the

left.

Our goal is to find a short vector in

{a1va + a2v2 | a1, a2 ∈ Z}

Definition 23.2 (Lattice)
Let v1, v2, . . . , vn ∈ Rm be linearly independent vectors vectors (so n ≤ m).

The lattice generated by v1, . . . , vn is:

{a1v1 + · · ·+ anvn : a1, . . . , an ∈ Z}

59



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Remark 23.3. There is a fast algorithm to find short vectors in a 2D lattice (which is the one above).
Then, Eve can use this to break the above cryptosystem. (We will see this later.)

§23.2 Subset Sum Cryptosystem

The subset sum problem is as follows: Given M1,M2, . . . ,Mn ∈ Z: find a subset whose sum is S.

Example 23.4
We take M = {2, 3, 5, 8} and S = 10. S = 2 + 8 = 2 + 3 + 5. (We note that the subset is not
necessarily unique).

The idea is as follows:

Alice chooses M1,M2, . . . ,Mn. Bob has a message x1, x2, . . . , xn where each xi ∈ {0, 1}. Bob
computes

∑
xiMi (that is, Bob’s message specifies a subset of Mi’s) and sends to Alice.

Alice has to recover which subset Bob sent her. Alice needs to have chosen M1, . . . ,Mn so that a)
the solution to subset-sum is unique, b) it has some secret structure to solve subset sum. . .

Continued next time.

§24 April 8, 2022

§25 April 11, 2022

§25.1 Merkle-Hellman Public Key Cryptosystem

Alice picks a superincreasing sequence r1, r2, . . . , rn . Alice also picks A,B relatively prime integers
with B > 2 · rn. This is Alice’s private key.

Alice computes sequence
Mi = A · ri mod B

which is her public key.

Bob encrypts message (x1, . . . , xn) by calculating

c =
∑

xiMi

and sending it to Alice.

60



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Alice decrypts c as follows.

c =
∑

xiMi =
∑

xiAri mod B

A−1 · c =
∑

xiri mod B

where xi · ri is less than B. So decryption is to calculate c′ = A−1 · c (mod B). Then write

c′ =
∑

xi · ri

using algorithm for superincreasing sequences.

We implement as follows:

1 from sssi import ∗
2

3 R = [1, 3, 9, 20, 50, 101]
4 A = 485
5 B = 1009
6 print(f"A and B coprime? {gcd(A, B) == 1}")
7

8 M = [i ∗ A % B for i in R]
9 print(f"M = {M}")

10

11

12 def e(X):
13 return sum([X[i] ∗ M[i] for i in range(len(M))])
14

15

16 c = e([1, 1, 1, 0, 1, 1])
17

18 print(f"c = {c}")
19

20

21 def d(c):
22 cp = ext_gcd(A, B)[0] ∗ c % B
23 return sssi(R, cp)
24

25

26 print(f"d(c) = {d(c)}")

§25.2 Merkle-Hellman & Lattices

We consider the lattice L generated by

V1 = (2, 0, 0, . . . , 0,M1)

V2 = (0, 2, 0, . . . , 0,M2)

...
Vn = (0, 0, 0, . . . , 2,Mn)

Vn+1 = (1, 1, 1, . . . , 1, c)

61



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

where c is our ciphertext. We note that L contains(
n∑
i=1

xivi

)
− vn+1

(2x1 − 1, 2x2 − 1, . . . , 2xn − 1, 0) = (±1,±1, . . . ,±1, 0)

This vector is short ! It has length about
√
n. The upshot is that we can reduce breaking M-H to

finding short vectors in lattices.

§25.3 Vector Spaces and Inner Products: Review

Let V ⊆ Rm be a subspace of dimension n. We must have n ≤ m. This subspace has a basis

(v1, v2, . . . , vn) .

Any vector w ∈ V can be written as w = a1v1 + · · · anvn uniquely. Let’s say we have

w1 = a11v1 + · · · a1nvn
w2 = a21v1 + · · · a2nvn

...
wn = an1v1 + · · · annvn

When is {wi} a basis? It is when we can also express

v1 = a11w1 + · · · a1nwn
v2 = a21w1 + · · · a2nwn
...

vn = an1w1 + · · · annwn

That is, we can define a change-of-basis matrices

A =

a11 . . .
ann


B =

b11 . . .
bnn


where A · B = I. We also have that (detA)(detB) = 1 so detA 6= 0. Conversely, Cramer’s rule
gives a formula for A−1 = 1

detA(· · · ) that involves division by detA.

So we have that {wi} is a basis ⇐⇒ detA 6= 0.

Question. What if instead of talking about subspaces of a vector space, we talked about a lattice?

62



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

We restrict ai ∈ Z. When is {wi} a basis for the same lattice? The logic is the same as saying
A ·B = I for some integer matrix B. This certainly implies detA = detB = 1. Then detA = ±1.

For lattices: {wi} is a basis if and only if detA = ±1.

§26 April 15, 2022

§26.1 Vector Spaces and Inner Products

For
v = (v1, v2, . . . , vn) ∈ Rn

we can compute ||v|| =
√
v21 + v22 + · · ·+ v2n =

√
v · v.

For two vectors

v = (v1, v2, . . . , vn)

w = (w1, w2, . . . , wn)

both in Rn, we have

v ·w = v1w1 + v2w2 + · · ·+ vnwn = ||v|| · ||w|| cos θ

Definition 26.1
An orthogonal basis {vi} is a basis with

vi · vj = 0 for i 6= j

Definition 26.2
An orthonormal basis is an orthogonal basis with ||vi|| = 1, ∀i.

Let {vi} be an orthonormal basis, and

u = a1v1 + · · · anvn
w = b1v1 + · · · bnvn

63



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

O

v

w

Figure 1: Not orthogonal basis.

O

v

w

Figure 2: Orthogonal but not orthonormal

O

v

w

Figure 3: Orthonormal basis

then

u ·w =

(∑
i

aivi

)
·

∑
j

bjvj


=
∑
i,j

aibjvivj

=
∑

ai · bj

64



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Let V ⊆ Rm be a subspace of dimension n ≤ m have basis {v1,vw, . . . ,vn}.

Example 26.3
V ⊆ R3, a 2 dimensional subspace spanned by

(1, 0,−1) (1,−1, 0)

which is the plane x+ y + z = 0.

Question. How do we find an orthogonal basis for V ?

We use an algorithm called Gram-Schmidt.

We first fix v′1 = v1. We then pick a v2 and compute v′2 = v2−µ21v1 where µ21v1 is the projection
of v2 onto v1. What should we select for µ21?

We want v1 · (v2 − µ21v1) = 0. This is to say

v1 · v2 − µ21(v1v1) = 0

µ21 =
v′1v2

v′1 · v′1

Let’s say we get a v3. We have v′3 = v3 − µ31v′1 − µ32v′2.

We now want

v′1(v3 − µ31v′1 − µ32v′2) = 0

v′1 · v3 − µ31(v′1 · v′1) = 0

µ31 =
v′1 · v3

v′1 · v′1

v′2(v3 − µ31v′1 − µ32v′2) = 0

v′2 · v3 − µ32(v′2 · v′2) = 0

µ32 =
v′2 · v3

v′2 · v′2

So in general, we want

v′j = vj −
∑
i<j

v′i · vj
v′i · v′i

· v′i

In code, we can implement this as follows (not using numpy):

1 from sympy import sqrt, Rational
2

3

4 def dot(v: list[int], w: list[int]) −> int:
5 """
6 Computes the dot product of two vectors.
7

8 >>> dot([1, 2], [3, 4])
9 11

65



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

10

11 >>> dot([1, 2, 1], [3, 4, 3])
12 14
13

14 param v: a vector
15 param w: a vector
16 return: the dot product of v and w
17 """
18 return sum(v_i ∗ w_i for v_i, w_i in zip(v, w))
19

20

21 def length(v: list[int]) −> float:
22 """
23 Computes the length of a vector.
24

25 >>> length([3, 4])
26 5.0
27

28 >>> length([1, 2, 3])
29 sqrt(14)
30

31 param v: a vector
32 return: the length of v
33 """
34 return sqrt(dot(v, v))
35

36

37 def gs(L: list[list[int]]) −> list[list[int]]:
38 """
39 Computes an orthogonal basis of span(L).
40

41 >>> gs([[1, 0, −1], [1, −1, 0]])
42 [[1.0, 0, −1.0], [0.5, 1.0, 0.5]]
43

44 param L: a list of basis vectors
45 return: an orthogonal basis using the Gram−Schmidt process
46 """
47 M = []
48 for v in L:
49 for w in M:
50 mu = Rational(dot(w, v), dot(w, w))
51 v = [v_i − mu ∗ w_i for v_i, w_i in zip(v, w)]
52 M.append(v)
53 # Uncomment below if we want orthonormal basis:
54 # M = [[v_i / length(v) for v_i in v] for v in M]
55 return M

What about with lattices? *** (pretty diagram)

Any subgroup of a lattice (in particular, of Zn) is itself a lattice.

66



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Definition 26.4
A subgroup of Zn is called an integral lattice.

Question. Is any subgroup of Rn a lattice?

Clearly not! Rn itself is not a lattice. Qn is similarly not a lattice.

We want to characterize subgroups of Rn that are lattices.

Definition 26.5
A subset S ⊆ Rn is discrete if for any x ∈ S: there is some ε > 0 such that

{y ∈ S | ||x− y|| < ε} = {x}

***another pretty picture

Theorem 26.6
A subgroup of Rn is a lattice iff it is discrete.

Proof. HW problem.

§27 April 15, 2022

§28 April 18, 2022

§28.1 Midterm 2 Review

• Apologies for poor communication.

• Feedback is welcome—will send out form.

Average: 28/40.

“A-level work” would equate to doing around 3 problems,
“B-level work” would equate to doing around 2 problems, and
“C-level work” would equate to doing around 1 problem.

67



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Problem 28.1. About 3/4 solved.

Idea: exploit something special about n being a Carmichael number. That is that aN−1 ≡ 1
(mod N). We can do something inspired by the Miller-Rabin test. We then have(

a
N−1

2 ≡ 1 (mod N)
)

If a
N−1

2 ≡ 1, then we decrement the exponent by a factor of two. We then check(
a
N−1

4 ≡ 1 (mod N)
)

and so on. Eventually, we’ll find a nontrivial square root of 1. This produces a factorization, since

x2 ≡ 1 (mod n)

(x− 1)(x+ 1) ≡ 0 (mod n)

so gcd(x± 1, n) likely allows us to recover a factor of N . We run through this multiple times with
different values of a.

Problem 28.2. Hardest problem, 1/2 solved.

Idea: Implement some reasonably general-purpose factorization method:

1. Lenstra’s Elliptic Curve Factorization.

2. Quadratic Sieve.

3. Pollard ρ method.

Things that would not work:

1. Trial division.

2. Pollard p− 1.

The factorization was 15× 35 digits, which gives a relatively equal runtime for Elliptic Curve and
Quadratic Sieve.

Problem 28.3. About 2/3 solved (generally speaking, lost 3 points on it).

Idea: solve DLP. Babystep-Giantstep, as in class, yields 7/10 due to excessive memory usage. 4
people solved this problem in a way that didn’t use a shit-ton of RAM, with 3 distinct solutions.

How to solve DLP without using tons of RAM:

1. Babystep-Giantstep with fewer babysteps (B babysteps). We need B + N
B time to solve this,

which is minimized if B ≡ N0.5. We take a smaller B ≡ N0.3 or something, and our time
would be N0.7, still within the bounds.

68



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

2. Index calculus. Time/Memory are asymptotically small compared to Babystep-Giantstep.

3. Pollard ρ method (discussion of which is in textbook). Gives runtime of N0.5 with minimal
memory usage.

Problem 28.4. This was a fairly easy problem.

§29 April 20, 2022

§29.1 Short Vectors

Question. How short is the shortest vector in a lattice L?

A more general question we could ask:

Question. When does some region contain a nontrivial lattice point?

Theorem 29.1 (Minkowski’s Theorem)
Let L ⊆ Rn be a lattice of dimension n. Let S ⊆ Rn be a bounded symmetric convex set.

If Vol(S) > 2n det(L), then S ∩ L contains a nonzero lattice point.

Definition 29.2 (Bounded Set)
{Lengths of vectors in S} is bounded.

In other words, there is some ball that contains S.

Definition 29.3 (Symmetric Set)
If v ∈ S, then −v ∈ S.

Definition 29.4 (Convex Set)
If v,w, then the line segment connecting v and w is a subset of S.

Proof of Minkowski’s Theorem. Let F be a fundamental domain.

69



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Any vector w = t(w) + v(w) where t(w) ∈ F and v(w) ∈ L.

Consider map t : 1
2S 7→ F by sending every vector t : w 7→ t(w).

What does t do to volume? We cut S up into finite number of regions, and ‘cut-and-paste’ them
into the fundamental domain.

Locally, t preserves volume. When must two points in 1
2S be sent to the same point in F? When

we have ‘carpet’ with area greater than room area. That is to say, Vol(12S) > Vol(F) implies that
there is an overlapping point.

This is to say

Vol

(
1

2
S

)
> Vol(F)

1

2n
Vol(S) > Vol(F) = det(L)

Vol(S) > 2n det(L)

So given this inequality, there are two points in 1
2S such that t

(
1
2w1

)
= t

(
1
2w2

)
. Then we know

that
1

2
w1 −

1

2
w2 ∈ L

So then consider
1

2
w1 −

1

2
w2 =

1

2
(w1 −w2)

which is the midpoint of w1 and w2, which is in S and in L. So S contains a nonzero lattice
point.

Theorem 29.5 (Variant of Minkowski’s Theorem)
If S ⊆ Rn is bounded, symmetric, convex and closed set, then if

Vol(S) ≥ 2n det(L)

S ∩ L contains a nonzero lattice point.

Definition 29.6 (Closed Set)
Every limit point of S is contained in S.

We added the condition that S be closed, and changed our bound to be a ≥.

Proof of variant. For any k: (
1 +

1

k

)
S ∩ L

70



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

contains vk 6= 0 ∈ L (which is true by our first version).

The sequence v1,v2,v3, . . . is a sequence in 2S ∩L. 2S is bounded, so we have a finite set of lattice
points. There’s some v 6= 0 is contained in

⋂
k

(
1 + 1

k

)
S = S because S is closed.

Corollary 29.7 (Hermite’s Theorem)
Let L be a lattice of dimension n in Rn. Then, L contains a vector v with

||v|| ≤
√
n · det(L)

1
n

Proof. Application of Minkowski’s Theorem. Apply Minkowski’s Theorem to{
(x1, . . . , xn)

∣∣∣ |xi| ≤ det(L)1/n
}

which is a cube with side length 2 · det(L)1/n. So Vol(S) = 2n · det(L). The diagonal has length√
n det(L)1/n.

A variant of Hermite’s Theorem is that we can find an entire basis v1,v2, . . . ,vn such that

||v1|| · ||v2|| · · · ||vn|| ≤ nn/2 det(L)

and we define the Hadamard ratio to be

H =

(
det(L)

||v1|| · ||v2|| · · · ||vn||

)1/n

where 0 < H ≤ 1 and H = 1 when our basis is orthogonal.

§30 April 22, 2022

§30.1 Short Vectors continued

Recall: last class we stated Hermite’s Theorem:

Theorem (Hermite’s Theorem)
Let L be a lattice of dimension n. Then 0 6= v ∈ L with

||v|| ≤
√
n · det(L)

1
n

Proof. Apply Minkowski’s Theorem to the cube

S =
{

(x1, . . . , xn)
∣∣∣ −det(L)1/n ≤ xi ≤ det(L)1/n

}
71



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Minkowski’s states that S contains a nonzero lattice vector. By inspection, this lattice vector v ∈ S
implies that

||v|| ≤
√

(det(L)1/n)2 + · · ·+ (det(L)1/n)2︸ ︷︷ ︸
n times

=
√
n(det(L)1/n)

Theorem (Variant of Hermite’s Theorem)
There is a basis v1, . . . ,vn with

||v1|| · ||v2|| · · · ||vn|| ≤ nn/2 det(L)

Definition 30.1 (Hadamard Ratio)
The Hadamard Ratio is

H =

(
|det(L)|

||v1|| · ||v2|| · · · ||vn||

)1/n

The variant of Hermite’s Theorem says that there is a basis for which H ≥ 1√
n
. For any basis,

0 < H ≤ 1. H = 1 if and only if our basis is orthogonal.

This ratio makes precise how orthogonal our basis is.

We can write this in code (now enhanced with NumPy! ):

1 from numpy import ∗
2 from numpy.linalg import ∗
3

4

5 def hadamard_ratio(L):
6 """
7 Computes the Hadamard ratio of a list of vectors.
8 """
9 H = abs(det(array(L)))

10 for v in L:
11 H /= norm(v)
12 return H ∗∗ (1 / len(L))

Instead of using a hypercube, we can use a hypersphere. Let

S = BR(0),

a ball with radius R centered at 0. Minkowski’s theorem says S contains a nonzero lattice vector
if Vol(BR(0)) ≥ 2n · det(L). Let Vol(BR(0)) = Cn ·Rn where Cn is the volume of a unit ball in n
dimensions.

72



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

This is also to say that

R ≥ 2

C
1/n
n

det(L)1/n

Fact from analysis/calculus (Stirling’s Formula):

lim
n→∞

C1/n
n ·

√
n =
√

2πe.

The key point is

R ≥ 2

C
1/n
n

det(L)1/n ≈
√

2

πe

√
n(det(L))1/n

Question. What is the real truth? Given a random lattice, how long is the shortest vector? What
is the actual length (probably)?

How many lattice points “should” a ball of radius R contain? Probably the volume divided by the
volume of the fundamental domain:

Vol(S)

Vol(F)
=

Vol(S)

det(L)
.

So when should BR(0) contain nonzero v ∈ L? This is probably when Vol(BR(0)) ≥ det(L).

It’s around when

R ≥
√

1

2πe

√
n(det(L))1/n

Definition 30.2 (Gaussian Expected Shortest Length)
σ(L) =

√
n

2πe · (det(L))1/n is called the Gaussian expected shortest length.

We expect ||vshortest|| ≈ σ(L). We know ||vshortest|| . 2 · σ(L)

§30.2 Babai’s Algorithm

Goal: we want to solve, approximately, the closest vector problem. We have L ⊆ Rn with basis
v1, . . . ,vn. We have some w ∈ Rn. We want to find a close lattice vector to w. That is, we want

a1, a2, . . . , an ∈ Z

where ||w −
∑
aivi|| is small.

Method:

1. Write w = α1v1 + · · ·αnvn.

73



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

2. Round αi to nearest integer ai.

Question. When does this work well?

We implement this in code:

1 from numpy import ∗
2 from numpy.linalg import ∗
3

4

5 def babai(L, w):
6 """
7 param L: lattice
8 param w: vector
9 """

10 M = array(L).T
11 W = array([w]).T
12 a = vectorize(round)(inv(M) @ W)
13 wp = M @ a
14 return ([i[0] for i in a], [i[0] for i in wp])

§31 April 25, 2022

§31.1 Babai’s Algorithm continued

Recall: We revisit some topics from before. We reverse our original course and use sage instead of
numpy. (For symbolic math).

1 def hadamard_ratio(L):
2 H = abs(L.det())
3 for v in L:
4 H /= v.norm()
5 return ((H ∗∗ (1 / L.dimensions()[0]))).n()
6

7 L = random_matrix(ZZ, 3, x=−10, y=10)
8

9 def babai(L, w):
10 a = w ∗ L.inverse()
11 a = a.apply_map(lambda x : x.round())
12 return (a, a ∗ L)
13

14 w = random_vector(ZZ, 3, x=−100, y=100)
15

16 print(f"Hadamard Ratio: {hadamard_ratio(L)}")
17 print(f"Babai: {babai(L, w)}")

74



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Proposition 31.1
If vi is orthogonal, then Babai’s Algorithm solves CVP.

Proof. We have some
w =

∑
aivi

and we want to minimize ∥∥∥w −∑αivi

∥∥∥2 =
∥∥∥∑(ai − αi)vi

∥∥∥2
=
∑

(ai − αi)2||vi||2

and this is minimized when αi is the closest integer to ai for all i.

We start using this theory of lattices to develop cryptosystems. . .

§31.2 GGH Cryptosystem: Digital Signatures

Alice: Chooses {vi} a good basis for some lattice. This is Alice’s private key.

Alice computes a bad basis wi = U · vi (for n× n matrix U with detU = 1). Note that wi is still a
basis for the same lattice.

How does Alice sign a document d ∈ Zn?

1. Apply Babai’s algorithm to find a close lattice vector.

2. Express answer
∑
aiwi in the bad basis.

How does Bob verify that this is the correct document?

Bob checks how close the document b to
∑
aiwi.

How do we generate U?

1. Start with identity matrix I.

2. Apply some random row operations.

(Code is in lattices.ipynb)

75



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§32 April 27, 2022

§32.1 GGH Cryptosystem: Public-Key Cryptosystem

Recall: last time we talked about GGH digital signatures.

We’re going to use similar ideas to construct a public-key cryptosystem. As before, we’ll have the
same public/private key setup as last time.

Alice: will choose a random basis {vi} which will be her private key, which is a sufficiently good
basis. Alice will then compute {wi} which is a bad basis (by multiplying by some U ∈ SLn(Z))
which is her public key.

Bob: will encrypt message {mi} by computing

c =
∑

miwi + r

where r is a randomly generated short vector.

Alice: Find the closest lattice point to c using Babai’s algorithm, and express it in the public basis
{wi}.

Code in lattices.ipynb.

§32.2 Lattice Reduction

Warm-up: Gaussian Lattice Reduction.

We’ll see how to find the shortest vector in a 2-dimensional lattice.

With Gram-Schmidt, we made an orthgonal basis.

O

v2

v1

µ · v1

v′2

Using Gram-Schmidt, we have v′2 = v2 − µ · v1 where µ = v1·v2
v1·v1

.

With lattice reduction, we round µ to subtract by an integer multiple of v2 instead.

76



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

O

v2

v1

1 · v1

v′2

Lattice reduction gives us
v′2 = v2 − bµe · v1

We do this again and again.

Code in lattices.ipynb.

We should prove that this gives us a reasonable basis when this algorithm finishes.

Proposition 32.1
This algorithm terminates.

Proof. Integer vectors ||v1|| and ||v2|| always decrease, and there are only finitely many lattice
vectors that strictly decrease.

Proposition 32.2
When this algorithm terminates, v1 is the shortest vector in the lattice.

Proof. At the end, we know that ||v2|| ≥ ||v1|| and that

−1

2
≤ µ =

v1 · v2

v1 · v1
≤ 1

2
.

Any vector w = a1v1 + a2v2. So

||w||2 = a21 · ||v1||2 + 2a1a2(v1 · v2) + a22||v2||2

≥ a21 · ||v1||2 + a1a2||v1||2 + a22||v2||2

= (a21 + a1a2 + a22)||v1||2

And a21 + a1a2 + a22 = 3
4(a1 − a2)2 + 1

4(a1 + a2)
2 > 0. otoh a1, a2 ∈ Z so a21 + a1a2 + a22 ≥ 1.

So any ||w||2 ≥ ||v1||2.

77



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

§33 May 2, 2022

§33.1 LLL Reduction

Problem: Given a lattice, find a good basis for the given lattice. Let’s say we have

B = (v1,v2, . . . ,vn)

B′ = (v′1,v
′
2, . . . ,v

′
n)

where B′ is the corresponding vector space obtained from Gram-Schmidt. Note that this is not a
basis of the lattice.

We have
v′i = vi −

∑
j<i

µijv
′
j

where µij =
vi·v′j
v′i·v′i

.

What do we know about det{vi} and det{v′i}? We note that det{vi} = det{v′i}. This is as our
row/column operations (except scaling) don’t change determinant.

Ideas:

We want some v1,v2, . . . ,vn are approximately orthogonal.

We want v1 ≤ v2 ≤ · · · ≤ vn (approximately sorted).

78



E. Larson (Spring 2022) Math 1580: Cryptography Lecture Notes

Definition 33.1 (LLL Reduction)
B is LLL reduced if

1. We want a measure of orthogonality, so we bound µij from Gram-Schmidt to a certain
value.

We have that

|µij | =
∣∣∣∣vi · v′jv′i · v′i

∣∣∣∣ ≤ 1

2

2. We want our measure in a way that failure of exact orthogonality doesn’t contribute.

We take the projection of vi−1 onto

〈v1, . . . ,vi−2〉⊥

and compare that with the length of the projection of vi onto

〈v1, . . . ,vi−1〉⊥

We want

3

4

∣∣∣∣ Projection of vi−1 onto 〈v1, . . . ,vi−2〉⊥
∣∣∣∣ ≤ ∣∣∣∣ Projection of vi onto 〈v1, . . . ,vi−1〉⊥

∣∣∣∣
Noting that 3

4 was arbitrarly chosen as a ‘fudge factor’.

So we have

3

4
||vi−1||2 ≤ ||v′i + µi−1,i · v′i−1||2 = ||vi||2 + µ2i−1,i · ||v′i−1||

so then

||v2
i || ≥

(
3

4
− µ2i−1,i

)
· ||v′i−1||2

Our goal is that we want an algorithm to find an LLL basis. Additionally, once we do find an LLL
basis, we want to know that it will be sufficiently orthogonal.

Code in lll.ipynb.

79


	January 26, 2022
	Course Logistics
	Introduction
	Simple Substitution Ciphers
	Divisibility

	January 28, 2022
	Greatest Common Divisors
	Euclidean Algorithm
	Linear Combinations

	January 31, 2022
	Linear Combinations continued
	Modular Arithmetic

	February 2, 2022
	Inverses mod m
	Modular Arithmetic continued
	Fastish Powering

	February 4, 2022
	Fast Powering continued
	Fun Integers

	February 7, 2022
	Orders mod p
	Discrete Logarithm Problem
	Cryptographic Systems
	Symmetric Cryptography


	February 9, 2022
	Asymmetric/Public Key Cryptography
	Diffie-Hellman Key Exchange
	Elgamal Public Key Cryptography
	Implementation


	February 11, 2022
	Elgamal continued
	Midterm Details
	Introduction to Group Theory

	February 14, 2022
	Groups continued
	Computation Complexity

	February 18, 2022
	February 23, 2022
	Chinese Remainder Theorem
	Euler's Theorem
	Exponentiation

	February 25, 2022
	RSA Public-Key Cryptography
	Primality Testing

	February 28, 2022
	Miller-Rabin Primality Test

	March 7, 2022
	Pollard's p-1 Method
	Quadratic Sieve

	March 9, 2022
	March 11, 2022
	Quadratic Sieve continued
	Index Calculus & Discrete Logs

	March 14, 2022
	Elliptic Curves
	Addition on Elliptic Curves

	March 16, 2022
	Addition on Elliptic Curves continued
	Elliptic Curves over Finite Fields

	March 18, 2022
	Elliptic Curves over Finite Fields continued
	Elliptic Diffe-Hellman Key Exchange
	Elliptic Discrete Log Problem
	Sharing Secrets


	March 21, 2022
	Elliptic Curve Elgamal
	Elliptic Curve DSA

	March 23, 2022
	Elliptic Curve Factorization

	March 25, 2022
	Quantum Computation
	Deutch's Problem


	April 4, 2022
	Quantum Computing continued
	Shor's Algorithm
	Breaking Encryption
	Integer Factorization
	Quantum Elgamal/DLP


	April 6, 2022
	Lattices and Cryptography
	Subset Sum Cryptosystem

	April 8, 2022
	April 11, 2022
	Merkle-Hellman Public Key Cryptosystem
	Merkle-Hellman & Lattices
	Vector Spaces and Inner Products: Review

	April 15, 2022
	Vector Spaces and Inner Products

	April 15, 2022
	April 18, 2022
	Midterm 2 Review

	April 20, 2022
	Short Vectors

	April 22, 2022
	Short Vectors continued
	Babai's Algorithm

	April 25, 2022
	Babai's Algorithm continued
	GGH Cryptosystem: Digital Signatures

	April 27, 2022
	GGH Cryptosystem: Public-Key Cryptosystem
	Lattice Reduction

	May 2, 2022
	LLL Reduction


