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§0 January 27, 2022

§0.1 Course Logistics

• Mostly refer to syllabus for any information that you might need.

• Midterm is planned for March 17.

• Final exam schedule can be found on CAB.

§0.2 Introduction to Number Theory

Number theory can be split into two branches: analytic number theory and algebraic number
theory.

What is number theory? Number theory is the study of integers and their analogues in algebraic
number fields.

Prime numbers are a key focus of number theory, and the study of different properties of primes
constitutes different fields of number theory:

i. The study of their distributional properties, which is analytic number theory.

ii. As building blocks for algebraic numbers, which is algebraic number theory.

§0.2.1 Examples of Analytic Number Theory

Here are some examples of analytic number theory and their statements:

• Prime Number Theorem

• Twin Prime Conjecture

• Goldbach’s conjecture

Theorem 0.1 (Prime Number Theorem)
Let π(x) be the number of primes between 1 and x, then

lim
x→∞

π(x)

x/ ln(x)
= 1.
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Conjecture 0.2 (Twin Prime Conjecture)
Twin primes are pairs of primes p, q of the form q = p+ 2. Examples include (3, 5), (11, 13), . . . .
The conjecture postulates that there are infinitely many twin primes.

Conjecture 0.3 (Goldbach’s conjecture)
Any positive even integer greater than 2 can be written as the sum of 2 primes.

§0.2.2 Examples of Algebraic Number Theory

Analyzing the factorization (rings of integers) of number fields is one topic of algebraic number
theory.

Example 0.4
2 is prime (irreducible) in Z.

Yet 2 is not prime in Z[i] (the Gaussian integers). This is because

2 = (1 + i)(1− i)︸ ︷︷ ︸
associates

we have that (1 + i) = i(1− i). We also note the property that the principal ideals (2) = (1 + i)2

are equal.

In this example, we say that 2 “ramifies” in the ring of integers.

Fermat’s Last Theorem is another such example.

Recall: that a Pythagorean triple is a triple of the form a, b, c ∈ Z+ such that

a2 + b2 = c2

Are there examples of such numbers with different exponents (say, kth powers for k ≥ 3)?

Theorem 0.5 (Fermat’s Last)
There are no positive integers a, b, c ∈ Z+ satisfying

ak + bk = ck

for k ≥ 3.

The answer is no! (Proved by Andrew Wiles)

5



N. Looper (Spring 2022) Math 1560: Number Theory Lecture Notes

Conjecture 0.6 (abc Conjecture, informally)
We say powerful numbers are positive integers whose prime factorization contains relatively few
distinct primes (appropriately weighted) with an exponent of 1.

Example
21037 is powerful, 210375 is powerful, 1 is powerful.

If a, b are very powerful coprime numbers, then a+ b is predicted to be not powerful.

Example 0.7
Consider 210 and 315. We have

210 + 315 = 14, 349, 931 = 31 · 462 · 901︸ ︷︷ ︸
not powerful

What about another example, like 315 + 5? The abc conjecture also predicts that this number is not
so powerful...1

§1 February 1, 2022
Happy Lunar
New Year! °

(Thanks Qinan and Andrew for allowing me to shamelessly copy their notes.)

§1.1 Divisibility and Factorization

We start with some commonly used notation:

Definition 1.1 (Divisibility)
We use a | b to mean “a divides b” and a - b to mean “a does not divide b”.

Now for a series of definitions:

Definition 1.2 (Primality)
A positive integer p ≥ 2 is said to be prime if its only positive divisors are 1 and p.

1After lecture Jiahua: It’s a prime!?
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Definition 1.3 (Positive Integers)
Z+ will denote the positive integers.

Definition 1.4 (Order)
For a nonzero n ∈ Z and a prime p, there is a nonnegative integer a such that pa | n but
pa+1 - n. This number a is called the order of n at p, denoted by ordp n.

For n = 0, we set ordp 0 =∞. We also have ordp n = 0⇔ p - n.

We prove a lemma as warm-up:

Lemma 1.5 (Existence of Factorization)
Every nonzero integer can be written as a product of primes.

We make an exception for −1. The empty product is 1 so 1 is fine.

Proof. Suppose for the sake of contradiction otherwise, that some nonzero integer can be written
as a product of primes. Let N be the smallest integer greater than 2 that cannot be written as a
product of primes.

N had better not be a prime number itself (since then it would be a product of itself). Then we
can write N = a · b where 1 < a, b < N .

Since we took N as the least such number that cannot be written as a product of primes, a and b
which are less than N can be written as a product of primes. Then N is a product of primes since
a and b individually are. This is a contradiction! Thus it had better be the case that every nonzero
integer can be written as a product of primes.

This is the theorem we will eventually work toward proving:

Theorem 1.6 (Unique Factorization)
Every nonzero integer n yields a unique prime factorization

n = (−1)ε ·
∏
p

pa(p), a(p) ≥ 0

where ε = 0 or 1, and ε, a(p) are uniquely determined by n. Moreover, we note that a(p) =
ordp n.

7
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§1.2 Euclidean and Principal Ideal Domains

Before this proof, we first recall a conclusion from Math 1530:

Lemma 1.7 (Division Lemma)
If a, b ∈ Z and b > 0, then there exists q, r ∈ Z such that

a = bq + r

with 0 ≤ r < b.

Proof. Consider the set
S = {a− xb | x ∈ Z}

We note that S contains some positive elements. Let r = a− qb be the least nonnegative element
of S.

We claim that 0 ≤ r < b. Suppose for the sake of contradiction otherwise, then r = a− qb ≥ b gives
a − qb − b ≤ 0 and a − (q + 1)b ≤ 0. Which is a contradiction since we took r to be a the least
nonnegative element in S and we’ve found such smaller element a− (q + 1)b.

Then it had better be that 0 ≤ r < b for some r, q ∈ Z.

Corollary 1.8
Z is a Euclidean domain, with a Euclidean function given by lemma 1.7.

Definition 1.9 (Euclidean Domain)
Let R be an integral domain. R is a Euclidean domain if there exists a function λ : R\{0} → N
such that if a, b ∈ R with b 6= 0, then there exists some c, d ∈ R with the property that
a = cb+ d with d = 0 or λ(d) < λ(b).

Example 1.10
Z is a Euclidean domain with λ function given in lemma 1.7.

R[x] for field R is also a Euclidean domain, with λ = deg.

Proposition 1.11
If R is a Euclidean domain, then R is a principal ideal domain. That is, if I ⊆ R is an ideal,
then ∃a ∈ R such that I = Ra = {ra | r ∈ R}.

8
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Proof. Assume WLOG that I is not the trivial ideal I 6= (0). Let 0 6= a ∈ I such that λ(a) ≤
λ(b)∀b ∈ I, b 6= 0.

We claim that I = (a) = Ra.

We know that Ra ⊆ I since I is an ideal. Let b ∈ I. Then ∃c, d ∈ R such that b = ca+ d where
d = 0 or λ(d) < λ(a). Now we have d = b− ca ∈ I, so we can’t have λ(d) < λ(a). Thus d = 0, so
b = ca ∈ Ra.

Hence we have I ⊆ Ra. Together, we conclude that I = Ra.

Definition 1.12 (Principal Ideals, PIDs)
If I = (a) for some a ∈ I, then I is said to be a principal ideal.

R is a principal ideal domain (PID) if every ideal of R is principal.

Here are some important properties of PIDs:

1. Nonunit irreducible elements are exactly the prime elements in R.

Recall: p ∈ R is irreducible if a | p⇒ a is either a unit or an associate of p.

p ∈ R is prime if p | ab⇒ p | a or p | b and p is a nonzero, nonunit of R.

2. GCDs always exist in PIDs.

§1.3 Unique Prime Factorization

We’re nearly ready to prove unique factorization, after a lemma:

Lemma 1.13
Suppose p is a prime, and a, b ∈ Z. Then ordp(ab) = ordp a+ ordp b.

Proof. WLOG, assume a, b 6= 0. We let

α = ordp a

β = ordp b

Then we have

a = pα · c where p - c
b = pβ · d where p - d

9
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Thus, ab = pα+β · cd. We have that p - cd since p - c and p - d (we rely on the fact that if p is
irreducible, p is prime). Thus we have that ordp(ab) = α+ β.

Proof. (of theorem 1.6, that Z is a UFD). Recall that for a nonzero n ∈ Z, we write

n = (−1)ε
∏
p

pa(p),where ε = 0 or 1 and a(p) ≥ 0

Given a positive prime q, we take ordq of both sides. By lemma 1.13, this yields

ordq n = ε · ordq(−1) + σpa(p) ordq(p)

Since we have that ordq(−1) = 0 and ordq(p) = 0, ∀p 6= q, we’ve uniquely determined a(q) since
ordq(n) = a(q). That is, a(q) is uniquely determined for all primes q. So n has a unique prime
factorization.

§1.4 Greatest Common Divisors

Definition 1.14
Let R be an integral domain. Then d ∈ R is said to be a gcd of two elements a, b if

i) d | a and d | b,

ii) if d′ | a and d′ | b, then d′ | d.

Remark. An aside for ring theory enthusiasts: gcd domains are a class of rings mroe general than
PIDs or UFDs.

We will denote (a, b) as the gcd of a and b.

Caution, however! gcd’s are only unique up to units.

Example
−5 and 5 are both gcds of −5 and 10 since −1 is a unit.

We will make the convention that the gcd of 2 integers is the positive gcd, that is, (−5, 10) = 5.

An edge case is that gcd(0, 0) = 0.

10
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§2 February 3, 2022

§2.1 Arithmetic Functions

We look at arithmetic functions and how they act on prime numbers:

Definition 2.1 (Arithmetic Function)
An arithmetic function is a function f : Z+ → C.

(Typically, these are integer valued.)

Example 2.2
We have some examples of arithmetic functions:

• Euler φ function.

• τ(n), the counting function. It takes a positive integer and counts the number of positive
divisors of n.

τ(n) =
∑
d|n

1

• σ(n), the sum of divisors function. It is the sum over all the positive divisors of n.

σ(n) =
∑
d|n

d

We have some properties of these functions, like multiplicative, completely multiplicative, additive,
completely additive.

Definition 2.3 (Multiplicativity)
An arithmetic function f is multiplicative if

f(mn) = f(m)f(n) whenever (m,n) = 1

f is said to be totally or completely multiplicative if

f(mn) = f(m)f(n) ∀m,n ∈ Z+

regardless of coprimality.

11
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If f is multiplicative and n1, . . . , nk are positive pairwise coprime integers, then

f(n1 . . . nk) = f(n1)f(n2) . . . f(nk).

A particular case that is useful is when we write

n = pe11 p
e2
2 · · · p

ek
k

so that assuming multiplicativity, we have that

f(n) = f(pe11 )f(pe22 ) · · · f(pekk )

A common type of arithmetic function is a summatory function, namely a function f of the form

f(n) =
∑
d|n

g(d), where g is some arithmetic function.

Food for thought: how special are summatory functions within the set of all arithmetic functions?

A special property of summatory functions is that they “inherit multiplicativity”.

Lemma 2.4
If g is a multiplicative function, and

f(n) =
∑
d|n

g(d) ∀n,

then f itself is multiplicative.

Proof. Suppose m,n ∈ Z+ are coprime positive integers.

The divisors d of mn are the products a · b where a | m and b | n. Each such pair a, b yields a
uniquely determined produce d = a ·b. Conversely, since (m,n) = 1, each divisor d of mn determines
a unique divisor a = gcd(d,m) and b = gcd(d, n) so that d = a · b.

Thus there is a bijection between divisors of mn and m,n separately

d | mn←→ (a | m, b | n)

Thus we have

f(m · n) =
∑
d|mn

g(d)

=
∑
a|m

∑
b|n

g(ab)

=
∑
a|m

∑
b|n

g(a)g(b)

=

∑
a|m

g(a)

∑
b|n

g(b)

 = f(m) · f(n)

12
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Thus completes the proof that f is multiplicative.

Recall: The functions introduced earlier

τ(n) =
∑
d|n

1 σ(n) =
∑
d|n

d

So τ is the summatory function of the constant 1 functions, and σ is the summatory function of
the identity function. We know that the constant 1 function and the identity function are both
completely multiplicative, so σ and τ are multiplicative functions.

The implication of which is that it suffices to apply τ and σ on prime powers and multiply.

Let p be a prime. Then

τ(pe) = e+ 1 (from p0 to pe).

We also have

σ(pe) = 1 + p+ p2 + · · ·+ pe =
pe+1 − 1

p− 1

Therefore, if n = pe11 p
e2
2 · · · p

ek
k , then

τ(n) =

k∏
i=1

(ei + 1)

σ(n) =

k∏
i=1

(
pei+1
i − 1

pi − 1

)
.

Remark 2.5. There are higher order divisor functions

σk(n) =
∑
d|n

dk

so σ0 = τ, σ1 = σ, . . .

§2.2 Review of Z/nZ and its units

Definition 2.6 (Modular Congruence)
If a, b,m ∈ Z, m 6= 0, we say that a is congruent to b modulo m if m | b− a. We write

a ≡ b mod m, or more simply a ≡ b (m)

Congruence mod m is an equivalence relation on Z. If a ∈ Z, a denotes the set of integers congruent
to a mod m, i.e. a = {a+ km | k ∈ Z}.

13
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Definition 2.7 (Z/mZ, Residues mod m)
The set of congruence classes mod m is denoted Z/mZ. This is a quotient ring of the ring of
integers Z.

If a1, a2, . . . , am form a complete set of congruence classes mod m, then the set of integers
{a1, a2, . . . , am} is called a complete set of residues mod m.

Z/mZ can be endowed with the structure of a commutative ring by setting

a+ b = a+ b

and a · b = ab,

and proving that this is well-defined as ring operations.

Proposition 2.8
The set of units in Z/mZ is exactly

{a | (a,m) = 1}

Proof. Let a ∈ Z/mZ, then

∃b ∈ Z/mZ s.t. b · a ≡ 1 mod m

⇐⇒ ∃b, n ∈ Z s.t. ba−mn = 1

Then by Bézout’s identity...

⇐⇒ (a,m) = 1

§2.3 The Euler φ Function

For n ∈ Z+, φ(n) is defined to be the number of integers 1 ≤ m ≤ n coprime to n.

Example 2.9
We have some examples of the Euler φ functions:

φ(1) = 1

φ(p) = p− 1 for any prime p

14
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Let e ≥ 1,

φ(pe) = pe − pe−1 for prime powers, we exclude multiples of p

Wouldn’t be great if φ were multiplicative? It is!

Theorem 2.10
If (m,n) = 1, then φ(mn) = φ(m)φ(n).

Proof. By the Chinese Remainder Theorem2, Z/mnZ ∼= Z/mZ× Z/nZ if (m,n) = 1.

Taking the unit groups on both sides, we have

(Z/mnZ)× ∼= (Z/mZ)× × (Z/nZ)×

and the Euler φ function is simply measuring the order of said unit groups (φ(n) = |(Z/nZ)×|).

Here is an important fact about the Euler φ function:

Proposition 2.11
We have ∑

d|n

φ(d) = n.

Proof. (1: a cute, snazzy proof) Consider the n rational numbers

1

n
,

2

n
, . . . ,

n− 1

n
,
n

n
= 1

and reduce all to lowest terms so that the numerator and denominator are coprime.

Q: Given a positive divisor d of n, how many fractions have d as the denominator?

A: We have exactly φ(d) of them.

Conversely, every denominator d is certainly a divisor of n. So we conclude that n =
∑
d|n

φ(d).

Proof. (2: using what we’ve learnt) We use the fact that φ is multiplicative, and that this function
is a summatory function of φ, so this function itself is multiplicative. We can decompose this into
prime powers. So it suffices to show this for prime powers.

2This is an easy way to prove this assuming Math 1530 (Abstract Algebra). There is another way to prove this with
one hand tied behind the back, it just takes more mental muscle to do.
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Let n = pk. Let
f(n) =

∑
d|n

φ(d).

Then we have

f(pk) =
∑
d|pk

φ(d) = 1 + (p− 1) + (p2 − p) + · · ·+ (pk − pk−1)

which is a telescoping sum which leaves

= pk

which is as intended.

§3 February 8, 2022

§3.1 Dirichlet Convolutions

Definition 3.1 (Dirichlet Convolution)
Let f, g be arithmetic functions. Then the Dirichlet convolution/product of g and g it

(f ∗ g)(n) : =
∑

d1d2=n

f(d1)g(d2)

=
∑
d|n

f(d)g(n/d)

We do check that this has properties that we want it to have, like associativity:

((f ∗ g) ∗ h)(n) = (f ∗ (g ∗ h))(n)

=
∑

d1d2d3=n

f(d1)g(d2)h(d3)

It is also clearly commutative.

We also have that this product has a multiplicative identity.

Definition 3.2
Let I : Z+ → {0, 1} be given by

I(n) =

{
1 if n = 1

0 otherwise

Then I is an identity for ∗, in the sense that f ∗ I = I ∗ f = f .

16
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Lemma 3.3
If f is an arithmetic function such that f(1) 6= 0, then there exists an arithmetic function g
such that f ∗ g = I.

It is given recursively by

g(1) =
1

f(1)

g(n) = − 1

f(1)
·
∑

d|n,d<n

g(d)f(n/d)

Proof. We want to show that given g and g defined as above, we have that f ∗ g = I.

n = 1:
g(1) · f(1) =

1

f(1)
f(1) = 1

n > 1: ∑
d|n

g(d)f(n/d) = g(n) · f(1) +
∑

d|n,n<n

g(d)f(n/d)

= − 1

f(1)
·
∑

d|n,d<n

g(d)f(n/d) · f(1) +
∑

d|n,n<n

g(d)f(n/d)

= 0

So g is indeed an inverse of f since they produce the identity function I.

§3.2 Möbius Inversion

The motivation of this is: given a summatory function of multiplicative functions, can we recover
the multiplicative function?

Definition 3.4 (Möbius µ Function)
We define µ : Z+ → {−1, 0, 1} given by

µ(n) =

{
(−1)k if n = p1p2 . . . pk if pi are pairwise distinct primes
0 otherwise

(We note that µ(1) = 1.)

17
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Lemma 3.5
µ is a multiplicative function.

Proof. Let m,n ∈ Z+ such that (m,n) = 1. We write

m = pe11 p
e2
2 · · · p

ek
k

n = qf11 q
f2
2 · · · q

fl
l

Case 1 Some exponent ei or fi ≥ 2. Then we have that

µ(mn) = µ(m)µ(n) = 0

Case 2 We have that

m = p1p2 · · · pk
n = q1q2 · · · ql

where pi and qi are all pairwise distinct. Then µ(m) = (−1)k and µ(n) = (−1)l, so µ(m) =
µ(n) = (−1)k+l.

Since these are coprime (m,n) = 1, then we have that µ(mn) = (−1)k+l.

Which is as intended, giving that µ is a multiplicative function.

Lemma 3.6
We have the property: ∑

d|n

µ(d) = 0 ∀n ≥ 2.

Which tells us that the summatory function of µ is I.

Proof. We define

f(n) :=
∑
d|n

µ(d) is multiplicative

We check this on prime powers, for prime p and e ≥ 1:

f(pe) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pe)

= 1− 1 + 0 + · · ·+ 0 = 0

so we’re done since f is multiplicative and is 0 for all power of primes.

18
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Lemma 3.7
Let i : Z+ → {1} be the constant 1 function.

i ∗ µ = µ ∗ i = I

Proof. In the case of n = 1, we have i(1)µ(1) = 1.

For n > 1, we have (i ∗ µ)(n) =
∑
d|n

µ(d) = 0 from above.

We see here that summatory functions can be seen as Dirichlet products: the summatory function
F of f is F = f ∗ i. What we said about summatory functions being multiplicative boils down to
Dirichlet convolutions preserving multiplicativity.

Recall: that summatory functions inherit multiplicativity. In fact, this holds for Dirichlet products
as well. If f, g are multiplicative, then so is f ∗ g.

The proof is parallel to the proof for summatory functions, for lemma 2.4.

Theorem 3.8 (Möbius Inversion)
Let

F (n) =
∑
d|n

f(d)

Then we have

f(n) =
∑
d|n

µ(d) · F (n/d) = µ ∗ F.

Proof. F = f ∗ i, then
F ∗ µ = (f ∗ i) ∗ µ = f ∗ (i ∗ µ) = f ∗ I = f.

which was simpler than I expected. . .

Corollary 3.9
If F is the summatory function of f , and F is multiplicative, then f is also multiplicative,
as f = µ ∗ F and µ is multiplicative and convolutions with multiplicative functions are
multiplicative.
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Corollary 3.10
Corollary 3.9 gives another proof that φ is multiplicative, as∑

d|n

φ(d) = φ ∗ i = id.

§3.3 Applications of Möbius Inversion

§3.3.1 Cyclotomic Polynomials

Recall: the nth cyclotomic polynomial Φn(x) is the unique irreducible polynomial in Z[x] dividing
xn − 1 but no xk − 1 for k < n.

Thus
Φn(x) =

∏
1≤k<n
(k,n)=1

(
x− e2πik/n

)

as the roots of this polynomial are exactly the primitive nth roots of unity. We have that∏
d|n

Φd(x) = xn − 1.

By Möbius inversion, if

G(n) =
∏
d|n

g(d),

then we have that

g(n) =
∏
d|n

G(d)µ(n/d)

In particular, taking G(n) = xn − 1 (with particular x ∈ C) as an arithmetic function, we have

Φn(x) =
∏
d|n

(xd − 1)µ(n/d) (x ∈ C)

Applying this identity for enough x ∈ C yields this as an identity of polynomials.

§3.3.2 Dynatomic Polynomials

The roots of cyclatomic polynomials are roots of unity. Dynatomic polynomials have as roots the
periodic points (of certain periods) of a polynomial.
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Definition 3.11
Let K be a field, and let f ∈ K[x] of degree d ≥ 2. Let

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

then P ∈ Ka is said to be periodic under f if

fn(P ) = P for some n ≥ 1

aAlgebraic numbers in field K, the field you get by adjoining all roots of polynomials in K[x].

Example 3.12
Let f(x) = x2 − 1. 0 is a period point under f :

0 7−→ −1 7−→ 0

and its period is 2.

Remark. If n is the smallest positive integer such that fn(p) = p (p periodic), then we call n the
exact period of p under f .

Definition 3.13
The nth dynatomic polynomial of f is

Φf,n(x) :=
∏
d|n

(
fd(x)− x

)µ(n/d)

We hope that Φf,n(x) has as its roots the points of exact period n. . . This hope is dashed. . .

Example 3.14
f(x) = x2 − 3

4 .

f2(x)− x =

(
x− 3

2

)(
1− 1

2

)3

f(x)− x =

(
x− 3

2

)(
x+

1

2

)
Thus

f2(x)− x
f(x)− x

=

(
x+

1

2

)2
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But x = −1
2 is fixed under f .

§4 February 10, 2022

§4.1 Congruences continued

Recall: that for m ∈ Z+, a, b ∈ Z, the linear congruence

ax ≡ b mod m

has a solution if and only if (a,m) | b. Unwinding this gives Bezout’s identity.

Q: How do we actually find a solution?

A: Either guess and check; or apply the following algorithm:

1) Divide all terms in the congruence by d = (a,m).

2) If step 1 yields
a′x ≡ b′ mod m′

with (a′,m′) = 1, then d := (a′, b′) is a unit mod m′, so we can divide both sides by d′.

a′d′−1x ≡ b′d′−1 mod m′

3) Let a′′x ≡ b′′ mod m be the result so far. We replace b′′ by some b′′ + km′3 such that
(a′′, b′′ + km′) > 1 allows us to repeat step 2. This results in some a′′′ such that |a′′′| < |a′′|.

Given that we repeat this process, this must eventually terminate, since the absolute values of
the a terms are strictly decreasing each time.

Example 4.1
Let 10x ≡ 6 mod 14.

1) (a,m) = (10, 14) = 2 so we divide through by 2.

5x ≡ 3 mod 7

2) Irrelevant since (5, 3) are coprime.

3) Consider integers of form 3 + 7k, and see which are divisible by 5. We can take k = 1. We

3Since made a′ and m′ coprime, we have (a′,m′) = 1 so we can indeed solve congruence a′′q ≡ b′′ + km′ gives
noncoprime pairs.
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get
5x ≡ 10 mod 7

2) Divide by (5, 10) = 5 so we have x ≡ 2 mod 7.

§4.2 Simultaneous Linear Congruences

Recall: the CRT/Sun-tzu’s theorem.

Theorem 4.2 (Sun-tzu’s Theorem / Chinese Remainder Theorem)
Suppose that m = m1m2 · · ·mt with (mi,mj) = 1∀i 6= j.

Let b1, b2 . . . , bt be integers, and consider the system of congruences

x1 ≡ b1 mod m1 (∗)
x2 ≡ b2 mod m2

...
xt ≡ bt mod mt

Then this system has a unique solution modulo ma.
aThat is, we have at least one solution, and we can shift it by any multiple of m.

Proof. Let ni = m1m2 · · ·��mi · · ·mt = m
mi

for each i. Since mi is coprime to mj , ∀j 6= i, we have
(ni,mi) = 1∀i. Then, there exists solutions ri, si ∈ Z such that

rimi + sini = 1

Let ei = sini. Then for each i,
ei ≡ 1 mod mi

and ei ≡ 0 mod mj , ∀j 6= i.

Our goal is to ultimately show

Z/mZ ' Z/m1Z× Z/m2Z× · · · × Z/mtZ

with each ei generating the “Z/miZ piece”.

Set

x0 =
t∑
i=1

biei

so that x0 ≡ bi (mod mi) ∀i, so x0 is a solution to eq. (∗).
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Suppose x1 is another solution. Then we have

x1 − x0 ≡ 0 mod mi ∀i, 1 ≤ i ≤ t

Since the mi are pairwise coprime, we get m | x1 − x0.

§4.3 Structure of Unit Groups

Recall: in Math 1530, we learned Lagrange’s theorem

Theorem 4.3 (Lagrange’s Theorem)
If G is a finite group, then for every subgroup H of G, we have |H|

∣∣ |G|.
Corollary 4.4
If G is a finite group of order n, and a ∈ G, then an = e, where e is the identity of the group.

We’ve seen that |U(m)| = φ(m).4 Applying Lagrange’s theorem, we have Euler’s theorem:

Theorem 4.5 (Euler’s Theorem)
For any a ∈ Z with (a,m) = 1, we have aφ(m) ≡ 1 mod m.

Definition 4.6
A subset R of Z is said to be a reduced set of residues mod m if R contains exactly one element
from each of the φ(m) congruence classes that are units mod m.

Alternate proof of theorem 4.5. Let R = {r1, r2, . . . , rφ(m)} be a reduced set of residues mod m.
If (a,m) = 1, then aR is also a reduced set of residues mod m. Thus, if x1, x2, . . . , xφ(m) ∈ aR
(pairwise distinct), then

x1x2 · · ·xφ(m) ≡ r1r2 · · · rφ(m) mod m

(ar1)(ar2) · · · (arφ(m)) ≡ r1r2 · · · rφ(m) mod m

aφ(m)(r1r2 · · · rφ(m)) ≡ r1r2 · · · rφ(m) mod m

since all the ri are units mod m, we divide through

aφ(m) ≡ 1 mod m

Which is as desired.
4For notation, we use U(m) := (Z/mZ)×.
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We’ll be studying roots of polynomials over Z/mZ, especially polynomials of the form xd − a.

By Sun-tzu’s theorem, the case of m being a prime power is especially important. This turns out to
have a lot to do with the case that m = p is a prime itself.

First something further afield :

Proposition 4.7
If p is a prime and p - d for d ∈ Z+, then the polynomial

xd − a ∈ (Z/pZ)[x], a 6≡ 0 mod p

has exactly d roots in some extension of Fp.

Conversely, if p | d, then there are fewer than d roots in any extension of Fp = Z/pZ.

The proof uses the following proposition:

Proposition
A nonzero polynomial f ∈ K[x] is separable if and only if it is relatively prime to its derivative
f ′. (A separable polynomial whose roots in its algebraic closure K whose roots are all distinct).

Proof.

⇒ Right Direction: Suppose f is separable and α be any root of f . Then f(x) = (x − α)h(x),
where h(α) 6= 0 since α is a non-repeated root.

We have f ′(α) = h(α) 6= 0, so α is not a root of f ′. Thus f and f ′ have no common roots, so
they are coprime.

⇐ Left Direction: Prove by contrapositive. Suppose f is not separable. i.e. it has some repeated
root which we call α.

Then f(x) = (x−α)2g(x), so f ′(x) = (x−α)2g′(x) + 2(x−α)g(x). We see that x−α divides
both f and f ′ so (f, f ′) 6= 1.

Which concludes the bidirectional.

Proof of proposition 4.7. We have f(x) = xd − a, a 6≡ 0 (mod p) has d distinct solutions in some
extension of Fp = Z/pZ, because

f ′(x) = dxd−1 (mod p)

and with 0 as its only root but 0 is not a root of f . By above we have that f is separable.
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Conversely, if p | d, then
f ′(x) ≡ 0 (mod p),

so (f, f ′) 6= 1, meaning that f is not separable.

Proposition 4.8 (4.1.2 of text)
If p is a prime and if d | p− 1, then the polynomial

xd−1 ∈ (Z/pZ)[x]

has exactly d roots in the base field Fp = Z/pZ.

Proof. We know this is true in the case of d = p − 1 because of Fermat’s Little Theorem (also
Euler’s Theorem).

We also note that (xd− 1) | (xp−1− 1). Since xp−1− 1 has all roots in the base field by FLT, xd− 1
had better also retain its roots in the base field Fp by contradiction.

§5 February 15, 2022

§5.1 Cyclicity of Groups

§5.1.1 mod odd p

Recall: from last class, we had proposition 4.8:

Proposition
If p is a prime and if d | p− 1, then the polynomial

xd−1 ∈ (Z/pZ)[x]

has exactly d roots in the base field Fp = Z/pZ.

Corollary 5.1
G := (Z/pZ)× is cyclic.

Proof. For d | (p− 1), we write ψ(d) for the number of elements of G having order d.
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Proposition 2 implies that5 ∑
c|d

ψ(c) = d (ψ ∗ i = id, ψ = id ∗µ)

Möbius inversion gives

ψ(d) =
∑
c|d

µ(c)
d

c
.

On the other hand, we have id = φ ∗ i ⇒ φ = µ ∗ id. Thus ψ(d) = φ(d) for all d | (p − 1). So in
particular, ψ(p− 1) = φ(p− 1) ≥ 1 for any prime p.

§5.1.2 mod odd power pe

Theorem 5.2
Let p ∈ Z+ be an odd prime, and let e ≥ 1. Then U(pe) is cyclic.

Proof overview:

1. Pick a primitive root mod p. We call it g (for generator).

2. Show that either g or g + p is a primitive root mod p2.

3. Show that if h is any primitive root mod p2, then h is a primitive root mod pe ∀e ≥ 2.

Proof of theorem 5.2.

Step 1. Let g be a primitive root modulo p given by corollary 5.1.

Step 2. Let d be the order of g mod p2. Since φ(p2) = p(p− 1), we have that

d | p(p− 1) by Lagange.

By definition of d,

gd ≡ 1 mod p2

so we also have

gd ≡ 1 mod p

Thus (p− 1) | d since g has order p− 1 mod p. Altogether, d is either p− 1 or p(p− 1). If
d = p(p− 1), then we are done with step 2. So we assume the former that d = p− 1.

Let h = g + p. We know that h is a primitive root mod p, so we do the same [yoga] as above
and conclude that the order of h mod p2 is either p− 1 or p(p− 1).

5We throw in Lagrange’s theorem, and essentially count the number of solutions to xd ≡ 1.
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By our new hypothesis,
gp−1 ≡ 1 (mod p2)

so modulo p2, we have

hp−1 = (g + p)p−1 = gp−1 + (p− 1)gp−2p+ · · ·+ pp−1

Modulo p2, the only terms that survive are (expand and all p2 terms die):

≡ 1− pgp−2 (mod p2)

But p - g, so pgp−2 6≡ 0 mod p, and hence hp−1 6≡ 1 mod p2. Thus the order of h mod p2 is
p(p− 1), so h generates U(p2).

So we are done with step 2. If g is a primitive root mod p, then either g or g+ p is a primitive
root mod p2.

Step 3. We wish to show that a primitive root mod p2 is also a primitive root mod pe ∀e ≥ 2. We
induct on e.

Let h be a primitive root mod pe for some fixed e ≥ 2. Let d be the order of h mod pe+1. By
Lagange, we have that d | φ(pe+1) = pe(p− 1), and from step 2,

φ(pe) = pe−1(p− 1) | d

Hence d = pe(p− 1) or pe−1(p− 1). If it’s the former then we are done, so we assume latter.

We want to show that
hp

e−1(p−1) 6≡ 1 mod pe+1

implying that d = pe(p− 1) after all.

Since h has order φ(pe) = pe−1(p− 1) in U(pe), we have

hp
e−2(p−1) 6≡ 1 mod pe (?)

However,
hp

e−2(p−1) ≡ 1 mod pe−1 (??)

Combining eq. (?) and eq. (??) yields

hp
e−2(p−1) = 1 + kpe−1

where p - k. Therefore, we have

hp
e−1(p−1) = (1 + kpe−1)p

= 1 + pkpe−1 +

(
p

2

)
k2p2e−2 + · · ·

Subsequent terms are all divisible by p3e−3 = (pe−1)3, and hence divisible by pe+1 as e(e−1) ≥
2 + 1 ∀e ≥ 2. Thus

hp
e−1(p−1) = 1 + kpe +

1

2
k2p2e−1(p− 1) mod pe + 1
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p is odd, so
1

2
k2p2e−1(p− 1)

is divisible by pe+1, since 2e− 1 ≥ e+ 1. Thus

hp
e−1(p−1) ≡ 1 + kpe mod pe + 1

Since p - k, we get that kpe 6≡ 0 so

hp
e−1(p−1) 6≡ 1 mod pe + 1

This proves that d = pe(p− 1), which is to say that h is a primitive root mod pe+1.

Altogether, we have that U(pe) is cyclic.

§5.1.3 mod powers of 2

Theorem 5.3
U(2e) is cyclic iff e = 1 or e = 2.

Proof. Clearly U(2) and U(4) are cyclic6.

We show that U(2e) is not cyclic for all e ≥ 3. Notice: it suffices to show that U(8) is not cyclic,
since we can find group homomorphisms down powers of 2.

U(8) = {1, 3, 5, 7}

and 1
2

= 3
2

= 5
2

= 7
2

mod 8.

§5.2 Classification of all cyclic unit groups

Corollary 5.4
U(m) is cyclic if and only if m = 1, 2, 4, pe or 2pe for some odd prime p.

Proof. Recall that a product G of finite cyclic groups G1 and G2 is cyclic iff (|G1|, |G2|) = 1.7 On
the other hand, φ(m) is even ∀m ≥ 3. So only one of G1 and G2 needs odd power.

Combined with our structure theorems on U(pe) for primes p, this proves the corollary since these
are the only possibilities.

6We don’t have much choice since there is only one trivial group and one group of order 2, both cyclic.
7Secretly, Chinese Remainder Theorem.
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§6 February 17, 2022

§6.1 Special Integers

§6.1.1 Fermat and Mersenne Primes

We make the observation that many small primes are of the form 2m ± 1 for some natural number
m, for example

3, 5, 7, 17, 31

We deal with the +1 and −1 cases separately.

Lemma 6.1
If 2m + 1 is prime, then m = 2n for some n ≥ 0.

Proof. We show the contrapositive. Suppose m is not a power of 2. We write m = 2n · q for some
odd q > 1.

The polynomial
f(t) = tq + 1

has t = −1 as a root, so
f(t) = (t+ 1)g(t) where deg f = q > 1

Thus

xm + 1 = f(x2
n
)

= (x2
n

+ 1)g(x2
n
) where m > 2n

Plugging in x = 2 gives
22

n
+ 1 | 2m + 1, and 22

n
+ 1 < 2m + 1

so 2m + 1 is not prime.

Definition 6.2 (Fermat Numbers)
Numbers of the form 22

n
+ 1 are called Fermat numbers.

Fermat numbers that are prime are called Fermat primes.

The first few Fermat numbers happen to be prime: 3, 5, 17, 257, 65537.
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Conjecture
Fermat conjectured that Fermat numbers are prime.

This is very false! Euler found that

22
5

+ 1 = 641× 6700417

We now turn to Mersenne numbers.

Lemma 6.3
If m > 1 and am − 1 is prime, then a = 2 and m is prime.

Proof. Suppose m is composite and, so m = nk, 1 < k, n < m. Then

am − 1 = (ak)m − 1

= (ak − 1)(ak(n−1) + · · ·+ 1)

This implies that am − 1 is composite. Hence m had better be prime.

Now am − 1 = (a− 1)(am−1 + · · ·+ 1), so we further have that a = 2.

Definition 6.4 (Mersenne Numbers)
Integers of the form 2p − 1 where p is a prime are called Mersenne numbers.

Mersenne numbers that are prime are called Mersenne primes.

There is a current ongoing search for more Mersenne primes on the internet. Currently, the largest
known Mersenne prime (and largest known prime number) is

M(82, 589, 933)

That is,
282,589,933 − 1

Mersenne primes are related to perfect numbers. There is a one-to-one correspondence with Mersenne
primes and even perfect numbers.
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Definition 6.5 (Perfect Number)
n ∈ Z+ is called perfect if

n =
∑
d|n
d<n

d

Example 6.6
We have

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

Proposition 6.7
If n2p−1

(2p − 1) where p ∈ Z+, and p, 2p − 1 are prime, then n is perfect.

Proof. The function σ(n) =
∑

d|n d is multiplicative. So if

n = 2p−1(2p − 1)

then
σ(n) = σ(2p−1)σ(2p − 1).

since they are coprime. Now we also

σ(2p−1) =
2p − 1

2− 1
= 2p − 1

σ(2p − 1) = 1 + (2p − 1) = 2p

Hence σ(n) = (2p−1) · 2p = 2n.

So n is a perfect number.

Proposition 6.8
If n ∈ Z+ is even and perfect, then n = 2p−1(2p − 1) where p and 2p − 1 are both prime.

Proof. This is a homework exercise!

It is currently conjectured that there are no odd perfect numbers.
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§6.1.2 Pseudoprimes and Carmichael Numbers

Homework 2 includes a problem for which a special case is Wilson’s Theorem.

Theorem 6.9 (Wilson’s Theorem)
If p is a prime, then

(p− 1)! ≡ −1 (mod p)

The converse is also true.

Proposition 6.10
If n ∈ Z+ where n ≥ 2 is such that

(n− 1)! ≡ 1 (mod n) (∗)

then n is prime.

We can think of eq. (∗) as a rudimentary ‘primality test’.

However, this is not a great primality test, because factorials are expensive to compute.

Recall Fermat’s little theorem.

Theorem 6.11 (Fermat’s Little Theorem)
If p ∈ Z+ is a prime and a ∈ Z, then

ap ≡ a mod p

Thus n ∈ Z+ and
an ≡ a mod n

for some a ∈ Z+, then n is composite.

Example 6.12
If a = 2, then

2n 6≡ 2 mod n⇒ n = 2 is composite

Question. We might wonder whether a converse to this holds. Disappointingly, no.
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Example 6.13
210 = 1024 = 1 (mod 341), so 2341 = (210)34 · 2 = 2 mod 341.

But 341 = 11 · 31, so 341 is composite.

Definition 6.14 (Pseudoprime)
We call n a pseudoprime to the base a if n is composite and happens to satisfy

an ≡ a mod n.

Example 6.15
341 is a pseudoprime to the base 2.

We might hope that if this test failed for a particular a, there exists some other a that can test
whether n is composite. However, this is not the case.8

It is not true that given a composite n, there exists an a ∈ Z+ such that n is not a pseudoprime to
the base a.

Definition 6.16 (Carmichael Numers)
n ∈ Z+ is called a Carmichael number if n is composite and

an ≡ a mod n, ∀a ∈ Z

Example 6.17
The smallest Carmichael number is 561.

Question. There are variants on this question? Can you have pseudoprimes that satisfy all but
one base?

Proposition 6.18
If a composite number n is not a Carmichael number, then at least half of the congruence
classes a ∈ (Z/nZ)× are such that n is not a pseudoprime to the base a.

Proof. Suppose n is a pseudoprime to the base:

a1, a2, . . . , ar ∈ (Z/nZ)×

8We learn in life to not be too hopeful.
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and suppose we have some a such that

an 6≡ a mod n

Then for all i,

(a · ai)n−1 = an−1an−1i

≡ an−1 mod n

6≡ 1 mod n

Thus n is not a pseudoprime to the bases a · a1, a · a2, . . . , a · ar.

Remark 6.19. The bases for pseudoprimes form a subgroup of the group of units.

Someone
check me on
this.

§7 March 1, 2022

§7.1 Power Residues

For this section, corresponds to pages 45-46 of Ireland & Rosen [IR90] are a good reference.

Definition 7.1 (Power Residue)
If m,n ∈ Z+ and a ∈ Z such that (a,m) = 1, then we say that a is an nth power residue
modulo m if and only if the congruence

xn ≡ a mod m (7.1)

has solutions.

Given eq. (7.1), we’re interested in two questions:

1) Does eq. (7.1) have a solution?

2) If yes, then how many?
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Proposition 7.2
If m ∈ Z+ is such that U(m) is cyclic, and a ∈ Z is such that (a,m) = 1, then

xn ≡ a mod m

has solutions if and only if
aφ(m)/d ≡ 1 mod m

where d = (φ(m), n).

If there are solutions, then there are exactly d solutions.

Proof. Let g be a primitive root mod m, and let

a = gb.

Suppose x = gy. Then

xn ≡ a mod m

⇐⇒ gny ≡ gb mod m

⇐⇒ ny ≡ b mod φ(m)

This is solvable if and only if d = (φ(m), n) | b. If there is at least one solution, then there are
exactly d solutions.

Now we show that d | b⇔ aφ(m)/d ≡ 1 mod m.

Forward direction:
aφ(m)/d = gb·φ(m)/d =

(
gφ(m)

)b/d
= 1 mod m

Backward direction:

aφ(m)/d ≡ 1 mod m⇒ gb·φ(m)/d ≡ 1 mod m⇒ φ(m) | b · φ(m)/d⇒ b

d
∈ Z

We can prove this using a similar group theory theorem that we can apply directly.

Theorem 7.3
Let G be a cyclic group of order n, suppose k ∈ Z+ and a ∈ G. Then a = bk (a is a kth power
in G) iff an/(k,n) = e iff xk = a has (n, k) solutions in G.

The proof of this theorem uses the following lemma:
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Lemma 7.4
Let G be a cyclic group of order n and let H be a subgroup of G of order d. Then x ∈ H iff
xd = e iff ord(x) | d.

Proof of theorem 7.3. Let H be a subgroup of kth powers in G9, and let g ∈ G be such that G = 〈g〉.

Then H = {gjk | j ∈ Z} = 〈gk〉. Since ord(gk) = n
(k,n) (exercise), we that |H| − n

(k,n) .

Consider φ : G → G that powers by k, φ : x 7→ xk. Then im(φ) = H, so this implies that φ is a
(k, n)-to-1 mapping (so gives us the number of solutions to each power, and how many k powers
there are).

Knowing how to solve these modulo a group of units gives us ways using CRT/Sunzi’s Theorem to
solve mod composite numbers.

We write m = 2epe11 · · · perr where pi are pairwise distinct odd primes. Then

xn ≡ a mod m, (a,m) = 1

is solvable if and only if the system

xn ≡ a mod 2e

xn ≡ a mod peii
...

xn ≡ a mod perr

is solvable.

We have that U(peii ), U(2), U(4) are all cyclic. Hence our prior discussion can be applied to those.

Question. How do we solve
xn ≡ a mod m

where e ≥ 3 (for powers of 2)?

Proposition 7.5 (4.2.2 from Text)
Let a ∈ Z be odd, e ≥ 3, and consider xn ≡ a mod 2e.

If n is odd, then a solution exists and is unique. If n is even, a solution exists if and only if
a ≡ 1 mod 4 and a2e−2/d ≡ 1 mod 2e where d = (n, 2e−2). When a solution exists, there are
exactly 2d solutions.

Proof. Exercise to come.
9This is indeed a subgroup. We use the fact that G is Abelian.
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§7.2 Quadratic Residues

Things are a lot simpler and nicer when we consider only quadratic congruences (as opposed to
arbitrary residues).

Definition 7.6 (Quadratic Residue)
Let a ∈ Z, m ∈ Z+, (a,m) = 1. We say that a is a quadratic residue mod m if the congruence

x2 ≡ a mod m (7.2)

has a solution.

Conversely, if a is not a quadratic residue (that is, eq. (7.2) does not have a solution), we call it a
nonresidue or a quadratic nonresidue.

We extract the consequences of previous propositions to get special cases of propositions 4.2.3 and
4.2.4 from text.

1) Let p ∈ Z+ be an odd prime, and suppose a ∈ Z with p - a. Then

x2 ≡ a mod p

is solvable iff

x2 ≡ a mod pe

is solvable for all e ≥ 1.

2) Let a ∈ Z be odd. Then

x2 ≡ a mod 8

is solvable iff

x2 ≡ a mod 2e

is solvable for all e ≥ 3.
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Proposition 7.7 (5.1.1 from Text)
Let

m = 2epe11 · · · p
er
r

be the prime factorization of m ∈ Z+, and suppose (a,m) = 1.

Then
x2 ≡ a mod m (7.3)

is solvable if and only if three conditions are satisfied:

i. If e = 2, then a ≡ 1 mod 4.

ii. If e ≥ 3, then a ≡ 1 mod 8.

iii. For each i, have
a(pi−1)/2 ≡ 1 mod pi

Proof. Sunzi’s theorem tells us that eq. (7.3) is solvable iff

x2 ≡ x mod 2e

x2 ≡ a mod pe11
...

x2 ≡ a mod perr

are all solvable.

First consider the first equation x2 ≡ 1 mod 2e. 1 is the only quadratic residue mod 4 and the
same thing is true mod 8. On the other hand, black box 2 gives us x2 ≡ a mod 8 is solvable iff
x2 ≡ a mod 2e for e ≥ 3. This gives us conditions i and ii.

Now consider x2 ≡ a mod peii . Proposition 7.2 gives that x2 ≡ a mod pi is solvable iff a(pi−1)/2 ≡ 1
mod pi. Black box 1 then tells us that

x2 ≡ a mod pi is solvable

⇐⇒ x2 ≡ a mod peii is solvable.

which concludes our proof.

Remark. Studying these quadratic congruences amounts to studying them modulo primes.

§7.3 The Legendre Symbol
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Definition 7.8 (The Legendre Symbol)
Let p be an odd prime, and let a ∈ Z.

(
a

p

)
=


1 if a is a quadratic residue mod p
0 if p | a
−1 otherwise

This symbol
(
a

p

)
is called the Legendre symbol.

Proposition 7.9 (5.1.2 of Text)
We have the following properties of the Legendre symbol:

(a) (
a

p

)
= a(p−1)/2 mod p

This is called Euler’s Criterion.

(b) (
ab

p

)
=

(
a

p

)
·
(
b

p

)
which is to say that the Legendre symbol is totally multiplicative.

(c) If a ≡ b mod p, then (
a

p

)
=

(
b

p

)
.

§8 March 3, 2022

§8.1 Quadratic Residues continued

Recall: definition 7.8 and proposition 7.9 from last class (right above).

We now prove the earlier proposition:

Proof of proposition 7.9.

(c) is clear.
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(a) By Fermat’s Little Theorem, if p - a, we have ap−1 ≡ 1 mod p, so

(a(p−1)/2 + 1)(a(p−1)/2 − 1) ≡ 0 mod p

Since mod p we have an integral domain, then we have that a(p−1)/2 ≡ ±1 mod p. We know
that a(p−1)/2 ≡ 1 mod p if and only if a is a quadratic residue mod p,

(b) This applies (a). (
ab

p

)
= (ab)(p−1)/2 = a(p−1)/2 · b(p−1)/2 =

(
a

p

)(
b

p

)

Corollary 8.1
We have some corollaries:

1) There are exactly p−1
2 quadratic residues and p−1

2 quadratic non-residues mod p.

2) The product of two residues is a residue, the product of a residue and a non-residue is a
non-residue, and the product of a non-residue and a non-residue is a residue.

3) If g is a primitive root modulo p, then(
gi

p

)
= (−1)i.

4) We have (
−1

p

)
= (−1)(p−1)/2

which has a fancy name. This is the “First Supplemental Law of Quadratic Reciprocity”.

§8.2 Gauss’s Lemma

We now discuss a characterization of the Legendre symbol due to Gauss.

Definition 8.2
For p ∈ Z+ an odd prime,

S =

{
−p− 1

2
,−p− 3

2
, . . . ,−1, 1, 2, . . . ,

p− 1

2

}
is called the set of least residues mod p.
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Definition 8.3
Let a ∈ Z such that p - a. Define µ to be the number of negative least residues of the integers

a, 2a, 3a, . . . ,

(
p− 1

2

)
a

Example 8.4
If p = 7 and a = 4, then p−1

2 = 3, and 1 · 4, 2 · 4, 3 · 4 are congruent to −3, 1,−2 mod 7. Thus
µ = 2.

Lemma 8.5 (Gauss’s Lemma)
Let p ∈ Z+ be an odd prime and let a ∈ Z be such that p - a. Then(

a

p

)
= (−1)µ.

Proof. It is convenient for us to partition the list S as

P = {1, 2, · · · , p− 1

2
}

N = {−1,−2, · · · ,−p− 1

2
}

so that µ = |aP ∩N |10.

A key observation is that if x, y ∈ P with x 6= y, then

ax 6≡ ±ay mod p

for otherwise,
a ≡ ±y mod p

which is impossible since x and y are distinct elements of P (positive residue classes, so not in N).

Thus aP = {εii | 1 ≤ u ≤ p−1
2 } for some εi = ±1.

Now we mimic the elementary proof of Euler’s Theorem:

a(p−1)/2 ·
(
p− 1

2

)
! ≡

(p−1)/2∏
i=1

εi

 · (p− 1

2

)
!

a(p−1)/2 ≡

(p−1)/2∏
i=1

εi


≡ (−1)µ

10There’s an abuse of notation here, but we conflate integers with their equivalence classes in S.
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since µ is equal to the order of the set that is contributing every −1 as εi.

Applying proposition 7.9 (Euler’s criterion), this concludes the proof.

We’ll use this lemma to prove Quadratic Reciprocity later.

We now use it to prove the Second Supplemental Law of Quadratic Reciprocity.

Proposition 8.6 (5.1.3, the Second Supplemental Law of Quadratic Reciprocity)
For p ∈ Z+ be an odd prime. (

2

p

)
= (−1)(p

2−1)/8

We note
p2 − 1

8
=

(p− 1)(p+ 1)

2 · 4
. From this, it follows that we’re really saying

(
2

p

)
=

{
1 when p = ±1 mod 8

−1 when p = ±3 mod 8

Proof. We apply Gauss’s Lemma with a = 2.

2P = {2, 4, 6, . . . , p− 1}

First suppose that p ≡ 1 mod 4. Then p−1
2 is even, so

2P =

{
2, 4, 6, . . . ,

p− 1

2︸ ︷︷ ︸
∈P

,
p+ 3

2
, . . . , p− 1︸ ︷︷ ︸
∈N

}

with the first p−1
4 elements in P and the last p−1

4 elements in N . So µ = |2P ∩N | = p−1
4 , so Gauss’s

Lemma gives (
2

p

)
= (−1)

p−1
4 =

(
(−1)

p−1
4

) p+1
2

= (−1)
p2−1

8

since p+1
2 is odd.

Now suppose p ≡ 3 mod 4. Then

2P =

{
2, 4, 6, . . . ,

p− 3

2︸ ︷︷ ︸
∈P

,
p+ 1

2
, . . . , p− 1︸ ︷︷ ︸
∈N

}

The first p−3
4 elements are in P , and the last p+1

4 elements are in N . Then µ = p+1
4 , so(

2

p

)
= (−1)

p+1
4 =

(
(−1)

p+1
4

) p−1
2

= (−1)
p2−1

8
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§8.3 Quadratic Reciprocity

Theorem 8.7 (Law of Quadratic Reciprocity)
Let p, q ∈ Z+ be distinct odd positive primes. Then(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

In other words, (
p

q

)
=

(
q

p

)
if and only if at least one of p, q is congruent to 1 mod 4.

Proof. coming soon!

Here’s the motivation behind this: we used Euler’s Criterion to easily calculate the quadratic
character of some a mod p. With Quadratic Reciprocity, we can solve the question “If we fix odd
prime q, for which p is q a quadratic residue?”

Example 8.8
Which odd primes p ∈ Z+ have 3 as a quadratic residue?

Suppose p ≡ 1 mod 4. Then(
3

p

)
=
(p

3

)
=

{
1 if p ≡ 1 mod 3

−1 if p ≡ −1 mod 3

Then p ≡ 1 mod 4 and p ≡ 1 mod 3 so p ≡ 1 mod 12 gives us(
3

p

)
= 1

and p ≡ 5 mod 12 gives (
3

p

)
= −1.

Now suppose p ≡ 3 mod 4. Then(
3

p

)
= −

(p
3

)
=

{
1 if p ≡ −1 mod 3

−1 if p ≡ 1 mod 3
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Thus,

p ≡ 11 mod 12 gives
(

3

p

)
= 1, and

p ≡ 7 mod 12 gives
(

3

p

)
= −1

So we conclude that
(

3

p

)
= 1 iff p ≡ ±1 mod 12.

§9 March 8, 2022

§9.1 Legendre Symbol continued

Example 9.1
Determine if 219 is a quadratic residue mod 383 (we note that 383 is a prime).(

219

383

)
=

(
3

383

)
·
(

73

383

)
We now flip the Legendre Symbols using quadratic reciprocity:

= −
(

383

3

)
·
(

383

73

)
= −

(
2

3

)
·
(

18

73

)
= 1 ·

(
18

73

)
=

(
2

73

)
·
(

9

73

)
=

(
2

73

)
= 1

Remark. We must factor the top argument before beginning to flip using quadratic reciprocity.

§9.2 Proof of Quadratic Reciprocity

Recall theorem 8.7:
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Theorem (Law of Quadratic Reciprocity)
Let p, q ∈ Z+ be distinct odd positive primes. Then(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

In other words, (
p

q

)
=

(
q

p

)
if and only if at least one of p, q is congruent to 1 mod 4.

Proof of Quadratic Reciprocity (theorem 8.7), using Gauss’s Lemma (lemma 8.5). wlog, let

P =

{
1, 2, . . . ,

p− 1

2

}
, N = −P,

Q =

{
1, 2, . . . ,

q − 1

2

}
We write P̃ , Ñ for P (mod p) and N (mod p) respectively, so that Gauss’s lemma gives(

q

p

)
= (−1)µ, where µ = |qP̃ ∩ Ñ |

In other words, µ is exactly the number of x ∈ P such that qx ≡ n (mod p) for some n ∈ N , and
hence the number of x ∈ P such that for y ∈ Z,

−p
2
< qx− py < 0.

We now specify more precisely which y can possibly satisfy this condition. Solving these inequalities
for y gives

qx

p
< y <

qx

p
+

1

2
.

otoh, since x ≤ p−1
2 ∀x ∈ P , this gives

y <
qx

p
+

1

2
≤ q(p− 1)

2p
+

1

2

<
q + 1

2
.

Thus 0 < y < q+1
2 , which means that

y ∈ Q =

{
1, 2, . . . ,

q − 1

2

}
.

We’ve shown that µ is the number of points (x, y) ∈ P ×Q such that

p

2
< qx− py < 0.
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Switching p and q, we also have (
p

q

)
= (−1)η

where η is the number of pairs
(y, x) ∈ Q× P

such that
−q

2
< py − qx < 0

which is exactly the number of pairs
(x, y) ∈ P ×Q

satisfying
0 < qx− py < q

2

(reflecting the inequality over 0).

We note that (
p

q

)(
q

p

)
= (−1)µ(−1)η = (−1)µ+η

so all that remains is counting µ and η. And we have that µ+ η is the number of ordered pairs
(x, y) ∈ P ×Q such that either

−p
2
< qx− py < 0 or 0 < qx− py < q

2

Noting that qx− py 6= 0 since x and y are from P and Q respectively, hence we can reduce this to

−p
2
< qx− py < q

2
.

Graphically, we are looking at:
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where µ+ η is the number of lattice points in the shaded region.

If α is the number of lattice points in A and β the number of lattice points in B. Then

µ+ η =
p− 1

2

q − 1

2
− (α+ β)

We show that α = β so that α+ β ≡ 0 (mod 2).

Let ρ be the rotation given by rotating the rectangle about its center leaves it invariant.

ρ(x, y) =

(
p+ 1

2
− x, q + 1

2
− y
)

Quick check that
qx− py < −p

2
⇔ qx′ − py′ > q

2

Since ρ maps lattice points to lattice points, then α = β which concludes the proof with a little
extra handiwork.

§9.3 Jacobi Symbol

The Jacobi symbol generalizes the Legendre symbol.

Definition 9.2 (Jacobi Symbol)
Let b be an odd positive integer and let a ∈ Z. Write b = p1p2 · · · pm, where pi are (not
necessarily distinct) primes. Then we write(a

b

)
=

(
a

p1

)(
a

p2

)
· · ·
(
a

pm

)
is called the Jacobi symbol.

We note some basic properties that the Jacobi symbol is totally multiplicative (on top and bottom!):(a1a2
b

)
=
(a1
b

)(a2
b

)
(

a

b1b2

)
=

(
a

b1

)(
a

b2

)

Remark. Note that they’re multiplicative fixing either top or bottom. That is, they don’t multiply
like fractions.
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Warning!
(a
b

)
= 1 does not imply that a is a quadratic residue modulo b (since we could have

−1’s from the factorization cancel out).

However,
(a
b

)
= −1 does imply that a is a non-residue modulo b. (it is a non-residue mod at least

one of prime factors of b).

Example 9.3 (
2

15

)
=

(
2

3

)(
2

5

)
= (−1)(−1) = 1

but 2 is not a quadratic residue modulo 15.

Proposition 9.4 (5.2.2 of Text)
We have the following properties about the Jacobi symbol:

(a) (
−1

b

)
= (−1)

b−1
2

(b) (
2

b

)
= (−1)

b2−1
8

(c) If a, b ∈ Z+, then (a
b

)( b
a

)
= (−1)

a−1
2

b−1
2

§10 March 10, 2022

§10.1 Jacobi Symbol continued

Recall:
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Definition (Jacobi Symbol)
Let b ∈ Z+ be odd, and let a ∈ Z. We write b = p − 1p2 · · · pm, where pi are primes (not
necessarily distinct). Then we have(a

b

)
=

(
a

p1

)(
a

p2

)
· · ·
(
a

pm

)
is called the Jacobi symbol.

This generalizes the Legendre symbol. We have basic properties that(a1a2
b

)
=
(a1
b

)(a2
b

)
(

a

b1b2

)
=

(
a

b1

)(
a

b2

)
We noted that

(a
b

)
= −1 implies that a is not a quadratic residue mod b but

(a
b

)
= 1 does not

imply a is a quadratic residue mod b.

We also stated analogues of the reciprocity laws for the Legendre symbol.

Lemma 10.1
Let r, s ∈ Z+ be odd. Then

(a)
rs− 1

2
≡ r − 1

2
+
s− 1

2
mod 2.

(b)
r2s2 − 1

8
≡ r2 − 1

8
+
s2 − 1

8
mod 2.

Proof.

(a) (r − 1)(s− 1) ≡ 0 mod 4. Hence

rs− 1 ≡ (r − 1)(s− 1) + r + s− 2 mod 4

≡ r + s− 2 mod 4

≡ (r − 1) + (s− 1) mod 4

≡ r − 1

2
+
s− 1

2
mod 2

which gives (a).
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(b) We follow the same procedure, more or less. (r2 − 1)(s2 − 1) ≡ 0 mod 16, so

r2s2 − 1 ≡ (r2 − 1)(s2 − 1) + r2 + s2 − 2 mod 16

≡ (r2 − 1) + (s2 − 1) mod 16

≡ r2 − 1

8
+
s2 − 1

8
mod 2

which gives (b).

Corollary 10.2
let r1, r2, . . . , rm ∈ Z+ be odd. Then

(a)
m∑
i=1

ri − 1

2
≡ r1r2 · · · rm − 1

2
mod 2.

(b)
m∑
i=1

r2i − 1

2
≡ r21r

2
2 · · · r2m − 1

8
mod 2.

Proof. By induction on m from lemma 10.1.

We restate the reciprocity laws but for Jacobi symbols, proposition 9.4:

Proposition (5.2.2 of Text)
We have the following properties about the Jacobi symbol:

(a) (
−1

b

)
= (−1)

b−1
2

(b) (
2

b

)
= (−1)

b2−1
8

(c) If a, b ∈ Z+, then (a
b

)( b
a

)
= (−1)

a−1
2

b−1
2

Proof of proposition 9.4.
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(a) + (b) are immediate from the corollary (factor b, sum exponents and take the parity of the exponent)
and the supplemental laws of quadratic reciprocity.

(c) Let

a = q1q2 · · · ql
b = p1p2 · · · pm.

Then (a
b

)( b
a

)
=
∏
i

∏
j

(
qi
pj

)(
pi
qj

)

= (−1)
∑

i

∑
j

(
qi−1

2

)(
pj−1

2

)

Applying the corollary,

= (−1)

(∑
i
qi−1

2

)(∑
j

pj−1

2

)

= (−1)

(
(
∑

i qi)−1

2

)(
(
∑

j pj)−1

2

)

= (−1)(
a−1
2 )( b−1

2 )

which is as desired!

Example 10.3
We try to compute with the Jacobi symbol. Recall example 9.1(

219

383

)
where we repeatedly factored and flipped. With a Jacobi symbol, we don’t need to start with
factoring; we can forego factorization of top argument and simply repeatedly flip:(

219

383

)
= −

(
383

219

)
= −

(
164

219

)
= −

(
4

219

)(
41

219

)
= −

(
41

219

)
= −

(
219

41

)
= −

(
14

41

)
= −

(
2

41

)(
7

41

)
= −

(
7

41

)
= −

(
41

7

)
= −

(
−1

7

)
= 1 .

What we did here is to exploit the fact that all Legendre symbols agree with Jacobi symbols, we
treat it as a Jacobi symbol and do ‘Jacobi-like’ manipulations on it.
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This marks the dividing line between the first half and latter half of the course! Everything up to this
point is fair game on the midterm. We also now switch to Stewart and Tall.

§10.2 Number Fields

Definition 10.4 (Algebraic Numbers)
A complex number x is called algebraic if it is algebraic over Q, i.e., if it satisfies a nonzero
polynomial equation over Q.

We denote the set of algebraic numbers over Q as Q.

Proposition 10.5
The set Q of algebraic numbers is a subfield of C. That is, addition and multiplication is closed,
and we have inverses for nonzero elements.

Proof. The key point is that if L/K is a field extension, then α ∈ L is algebraic over K iff K(α)/K
is finite.

So suppose α, β ∈ Q. Then Q(α)/Q and Q(β)/Q are finite. Thus Q(α, β)/Q is finite (and all pieces
of the associated diamond are finite extensions as well).
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Q

��

// Q(α)

��

Q(β) // Q(α, β)

Since α + β, α − β, αβ and for β 6= 0, α/β ∈ Q(α, β). This means that all of these elements are
algebraic over Q.

Definition 10.6
A number field is a subfield K of C such that [K : Q] <∞.

Thus every element of a number field is algebraic, so K ⊆ Q.

By the definition of a finite extension, every number field has the form

K = Q(α1, α2, . . . , αN ) for some α1, . . . , αn ∈ Q

However, something stronger than this holds.

Theorem 10.7 (Primitive Element Theorem)
If K is a number field, then K = Q(θ) for some θ ∈ Q.

Proof sketch. It is enough to show that if

K = K1(α, β),

then K = K1(θ) for some θ ∈ Q.

Suppose the minimum polynomials (over Q) of α and β respectively are (factored over roots in C):

(t− α1)(t− α2) · · · (t− αn) α1 = α

(t− β1)(t− β2) · · · (t− βn) β1 = β

These polynomials are separable. Hence for each i and each k 6= 1, there exists at most one x ∈ K1

such that
αi + xβk = α1 + xβ1.

(This only holds for more x when you have βk and β1 colliding). There are only finitely many of
these equations, so we can choose a nonzero c ∈ K1 such that

αi + cβk 6= α1 + cβ1
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for any 1 ≤ i ≤ n and 2 ≤ k ≤ m.

Define θ = α+ cβ. We claim that
K1(α, β) = K1(θ)

for which the proof is on page 39 of Stewart Tall.

§11 March 15, 2022

§11.1 Number Fields continued

Recall: from last class...

Definition
A complex number α is called algebraic if it is algebraic over Q.

Proposition
The set Q of algebraic numbers is a subfield of C.

Definition
A number field is a subfield K of C such that [K : Q] <∞.

Theorem (Primitive Element Theorem)
If K is a number field, then K = Q(θ) for some θ ∈ Q.

Crux of proof. Suppose K = K1(α, β). Thus K = K1(θ) for some θ that is easily found as a
function of α and β.

Write the minimum polynomials of α, β over K1(factored over C)

(t− α1)(t− α2) · · · (t− αn) αi ∈ Q, and α =: α1

(t− β1)(t− β2) · · · (t− βm) βi ∈ Q, and β =: β1

These are separable. Hence for each i and each k 6= 1, there exists at most one x ∈ K such that

αi + xβk = α1 + xβ1

Hence, since there are only finitely many of these equations, we can choose 0± c ∈ K, such that

αi + cβk 6= α1 + cβ1

for any 1 ≤ i ≤ n and 2 ≤ k ≤ m. We define θ = α+ cβ. We claim K = K1(θ).
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The proof up to this claim is actually useful in finding a primitive element.

Example 11.1 (p.39 [ST15])
Let K = Q(

√
2, 3
√

5).
α1 =

√
2, β1 =

3
√

5

We then have α2 = −
√

2 and we can let β2 = ζ3
3
√

5, β2 = ζ23
3
√

5 where ζ3 is the primitive 3rd
root of unity.

c = 1 has the property that
αi + cβk 6= α1 + cβ1

for 1 ≤ i ≤ 2 and 2 ≤ k ≤ 3.

Therefore, we can conclude that
√

2 + 3
√

5 is a primitive element for Q(
√

2, 3
√

5)/Q.

§11.2 Conjugates of Algebraic Numbers

Theorem 11.2 (p.40 [ST15])
Let K = Q(θ) be a number field of degree n over Q. Then there exists exactly n distinct field
embedding of K into C. (We label these σi : K ↪→ C, 1 ≤ i ≤ n.)

The σi(θ) =: θi are the zeros in C of the minimal polynomial of θ over Q.

Proof. Suppose σ : K ↪→ C is an embedding. We have that σ is the identity on Q (since σ(1) = 1),
so

0 = σ(f(θ)) = f(σ(θ)) where f := minpolyQ(θ).

Hence σ(θ) is a root of f .

Conversely, for each root θi of f , there is a field isomorphism11 taking

Q(θ)
σi−→ Q(θi)

such that σi(θ) = θi. Therefore we’ve shown a bijection between the roots of f and the embeddings
of K into C.

§11.3 Discriminants of Bases, Vandermonde Determinant

Let K = Q(θ) be a number field of degree n, and let {α1, α2, . . . , αn} be a basis of K as a vector
space over Q. Let σi : K ↪→ C, 1 ≤ i ≤ n be the embeddings of K into C.

11We find isomorphisms Q(θ)
∼−→ Q[x]/f and similarly Q(θi)

∼−→ Q[x]/f where f := minpolyQ(θ) = minpolyQ(θi).
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Definition 11.3
The discriminant of {α1, α2, . . . , αn} is

∆[α1, α2, . . . , αn] = det (σi(αj))
2

= det


σ1(α1) σ1(α2) · · · σ1(αn)

σ2(α1) σ2(α2) · · · σ2(αn)
...

...
. . .

...
σn(α1) σn(α2) · · · σn(αn)


2

If {β1, . . . , βn} is another basis, then ∀1 ≤ k ≤ n,

βk = σni=1Cikαi, Cik ∈ Q,

where det(Cik) 6= 0. Then it is a fact that

∆[β1, . . . , βn] = (det(Cik))
2 ·∆[α1, . . . , αn]

Theorem 11.4 (p.42 [ST15])
The discriminant of any basis for K = Q(θ) is rational and nonzero.

Proof. It suffices to show that this holds for {1, θ, θ2, . . . , θn−1} by the above fact.

Write θ = θ1, θ1, θ2, . . . , θn for the conjugates of θ1. Then

∆[1, θ, θ2, . . . , θn−1] =
(

det(θji )
)2

We use a general observation

Definition 11.5 (Vandermonde Matrix)
A (square) Vandermonde matrix is a matrix of the form

V =


1 t1 t21 . . . tn−11

1 t2 t22 . . . tn−12
...

...
...

. . .
...

1 tn t2n . . . tn−1n
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Claim 11.6 — The determinant of V is∏
1≤i<j≤n

(ti − tj).

Going back to the proof of our claim about discriminants, we can take ti = θi := σi(θ) to get

∆[1, θ, . . . , θn−1] =
∏
i<j

(θi − θj)2

= disc(minpolyQ(θ))

§12 March 17, 2022

§12.1 Midterm Review

General Advice

• 5-7pm. Location: Barus & Holley 168.

• There are 5 problems:

– Each are weighted equally, some have multiple sections in them.

– There is a bonus problem for a token number of points.

• Think about problems before starting! Don’t begin immediately.

Key Topics

1) Unique factorization in Z (theorem 1.6). Key points:

• Existence (using well-ordering of Z+)

• Uniqueness (using prime elements being irreducible elements in Z)

2) Z is a Euclidean domain with Euclidean function abs (absolute value) (corollary 1.8).

• Argument uses well-ordering of Z+ applied to the set S = {a− bq | b ∈ Z} when trying to
divide a by b.
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• Repeated application of this property yields the Euclidean algorithm for finding gcd’s.

3) Bezout’s Identity (not Bezout’s Theorem)

If a, b ∈ Z are integers (not both 0) and c ∈ Z, then there exists x, y ∈ Z such that

ax+ by = c

if and only if gcd(a, b) | c.

• We take set S = {ax + by | x, y ∈ Z} and use well-ordering to show that the smallest
element has to be c.

4) From Bezout to solving linear congruences in 1 variable, the linear congruence

ax ≡ b (mod m)

is equivalent to
ax−my = b

for some y ∈ Z. Applying Bezout’s tells us that this equation is solvable if and only if gcd(a, b) | b.
When a solution exists, there are d solutions modulo m.

• Showing there are d solutions: you divide a, b,m by gcd(a,m), then you have a modulus
m

gcd(a,m) where we have a unique solution. We lift up to solutions modulo m.

5) Sunzi’s theorem (theorem 4.2). For m,n ∈ Z+ with (m,n) = 1. And a, b ∈ Z, then the
simultaneous congruences

x ≡ a (mod m)

x ≡ b (mod n)

have a unique solution modulo mn.

• We have π : Z/mnZ→ Z/mZ× Z/nZ be the natural projectsion where ker(π) = {0} since
(m,n) = 1.

6) Structure of group of units (corollary 5.4). U(m) is cyclic ⇐⇒ m = 1, 2, 4, pe, 2pe.

Practice Problems

Problem 12.1. Find the integer 0 ≤ a ≤ 36 such that

3777(114452356245501) ≡ a (mod 37)

We can reduce the base 3777 ≡ 3 (mod 37). We reduce 1144523 ≡ 11 (mod φ(37)). We can reduce
the upper power 56245501 ≡ 1 (mod φ(φ(37))). This reduces to

311 ≡ a (mod 37)

which gives a ≡ 28 (mod 37).
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Problem 12.2. Let p ∈ Z be a prime and let g be a primitive root mod p. Describe the set

{gk | gk is a primitive root mod p}

Proof. We claim that gcd(k, p−1) = 1. Then for any element a = gα, we can find power (gk)β = gα

since we have gp−1 ≡ 1 so kβ − x(p − 1) = α for some x, which only has solutions by Bezout’s
identity when gcd(k, p− 1).

Lemma
Prove that for any finite group G of order n and any g ∈ G, the cyclic group 〈gk〉 for k such
that gcd(k, ord(g)) = 1 equals 〈g〉.

Proof. Let d = (k, ord(g)). Then there exists x, y ∈ Z such that

ord(g) · x+ k · y = d

so

gd = gord(g)·x+ky

= gord(g)·x · gky

= gky

so gd ∈ 〈gk〉 =⇒ 〈gd〉 ⊆ 〈gk〉. We have 〈gk〉 ⊆ 〈gd〉 since d | k. Thus 〈gd〉 = 〈gk〉.

We also have that (gk)ord(g)/d = (gord g)k/d = 1 so if d = (k, ord(g)) > 1 then ord(gk) < ord(g).

So together we have that 〈g〉 = 〈gk〉 if and only if (g, ord(g)) = 1.

Problem 12.3. Prove

Proposition
If f : Z+ → C is a nonzero multiplicative function, then f−1 (the Dirichlet inverse) exists and
is multiplicative.

Proof. Let h be given by

h(pk) = f−1(pk) prime powers pk

h(n) = h(pe11 ) · · ·h(pekk )

then (f ? h)(pk) = I(pk). Both f ? h and I are multiplicative, so

(f ? h)(n) = I(n) ∀n ∈ Z

60



N. Looper (Spring 2022) Math 1560: Number Theory Lecture Notes

and h = f−1.

(Existence, f(1) = 1 for any multiplicative function, so in particular our given f satisfies f(1) 6=
0.)

Problem 12.4. Define λ : Z+ → C by

λ(n) = (−1)e1+e2+···

where the ei’s are the exponents on the prime factorization of n. Let

g(n) =
∑
d|n

λ(d)

Prove that

g(n) =

{
1 if n is square
0 otherwise

Proof. We note that λ is multiplicative, and g is a summatory function of λ which is multiplicative.
So we just prove on prime powers. If we have prime power with even exponent, then p, p2, . . . , pe1 | pe1
gives 1 + (−1) + 1 + (−1) + · · ·+ 1 = 1. We have 0 otherwise.

§13 March 22, 2022

§13.1 Discriminants of bases, Vandermonde determinants

We have some review from last time:

Let K = Q(θ) be a number field of degree n, let {α1, . . . , αn} be a Q-basis of K, and let σi : K ↪→ C,
1 ≤ i ≤ n be the embeddings of K into C.

The discriminant of {α, . . . , αn} is

∆[αi, . . . , αn] = det


σ1(α1) σ1(α2) · · · σ1(αn)

σ2(α1) σ2(α2) · · · σ2(αn)
...

...
. . .

...
σn(α1) σn(α2) · · · σn(αn)


2

If {β1, . . . , βn} is another basis, then for all 1 ≤ k ≤ n,

βk =

n∑
i=1

cikαi, cik ∈ Q,

where det(cik) 6= 0. Fact from homework is that

∆[βi, . . . , βn] = det(cik)
2 ·∆[αi, . . . , αn]
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Theorem (2.7, p.42 [ST15])
The discriminant of any Q-basis for K is rational and nonzero.

Proof. It suffices to prove this for {1, θ, θ2, . . . , θn−1}.

We have the following observation:

Definition (Vandermonde Matrix)
A (square) Vandermonde matrix is a matrix of the form

V =


1 t1 t21 . . . tn−11

1 t2 t22 . . . tn−12
...

...
...

. . .
...

1 tn t2n . . . tn−1n



We then claimed (without proof) that

Claim — The determinant of V is ∏
1≤i<j≤n

(tj − ti).

Proof. We know that det(V ) = 0 when ti = tj for some i 6= j. So, det(V ) (as a polynomial in
t1, . . . , tn) is divisible by ti − tj for i < j. We have that the total degree of det(V ) as a polynomial
in t1, . . . , tn is

n−1∑
i=1

i =
n(n− 1)

2
.

On the other hand, the total degree of D is also
(
n
2

)
= n(n−1)

2 . Hence, det(V ) is a scalar multiple of
D (since ).

But det(V ) and D are both monic as polynomials (kinda) in Q(t2, . . . , tn)[t1]. Thus det(V ) = D.
Or something like that.

Going back to the proof of theorem 11.4, we take ti = θi := σi(θ) to get

∆[1, θ, . . . , θn−1] =
∏
i<j

(thetai − θj)2

= disc(minpolyQ(θ)).

which is clearly rational and nonzero in Q+.
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Example 13.1
Let

K = Q(
√

5)

with the obvious basis {1,
√

5}. We have

∆[1,
√

5] =

∣∣∣∣ 1
√

5

1 −
√

5

∣∣∣∣2
= (−2

√
5)2

= 20

and another basis is
{

1, 1+
√
5

2

}
and

∆

[
1,

1 +
√

5

2

]
=

∣∣∣∣∣ 1 1+
√
5

2

1 −1+
√
5

2

∣∣∣∣∣
2

= (−2

√
5

2
)2

= (
√

5)2 = 5

Example 13.2
Let

K = Q(
3
√

2)

A basis is {1, 3
√

2, ( 3
√

2)2} =: B

∆(B) =

∣∣∣∣∣∣
1 3
√

2 ( 3
√

2)2

1 ζ3
3
√

2 (ζ3
3
√

2)2

1 ζ23
3
√

2 (ζ23
3
√

2)2

∣∣∣∣∣∣
computation left as exercise. . .

§13.2 Algebraic Integers

Definition 13.3 (Algebraic Integer)
A complex number is an algebraic integer if it is a root of a monic polynomial with integer
coefficients.

We denote the set of algebraic integers by Z. By definitions, Z ⊆ Q.

Example 13.4
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The following are some algebraic integers:

•
√

2 ∈ Z since
√

2 is a root of x2 − 2.

• τ = 1
2(1 +

√
5), since τ2 − τ − 1 = 0.

Non-examples:

• 22
7 is not an algebraic integer. Why? We look at the 7-adic valuation of the monic
polynomial when we plug 22

7 in. What are some other ways to reason about this?

Key algebra fact: If f(x) ∈ Z[x] is a monic polynomial with f(x) = g(x) · h(x) where g(x), h(x) are
monic polynomials in Q[x], then g(x), h(x) ∈ Z[x]. (Gauss’s Lemma).

Hence, if 22
7 is an algebraic integer, if has some f(x) ∈ Z[x] for which it is a root. But it is also

a root of g(x) = x − 22
7 where f(x) = g(x) · h(x) forcing g(x) to be in Z[x]. So the fact that

minpolyQ
(
22
7

)
= x− 22

7 implies that 22
7 6∈ Z.

Definition (Algebraic Integer’)
An algebraic number θ is an algebraic integer iff minpolyQ(θ) ∈ Z[x].

§14 March 24, 2022

§14.1 Algebraic Integers continued

Recall: our definition for algebraic integers. . .

Definition (Algebraic Integer)
A complex number that satisfies f(x) = 0 for a non-constant monic polynomial f(x) ∈ Z[x] is
an algebraic integer.

An algebraic number is an algebraic number whose minimal polynomial over Q has integer
coefficients.

We denote this set by Z.

Clearly, we have that Z ⊆ Q.

Claim — We want to show that Z is, in fact, a subring of Q.
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Lemma 14.1 (Setup Lemma, p.44 [ST15])
θ ∈ C is an algebraic integer iff the additive group generated by all powers 1, θ, θ2, . . . ,
Z[θ, θ2, . . . ], is finitely generated.

Proof. Forward Direction. Suppose θ ∈ Z. Then for some n,

θn + an−1θ
n−1 + · · ·+ a0 = 0,

where ai ∈ Z,∀ 0 ≤ i ≤ n− 1.

Claim — Every power of θ lies in the additive group Γ generated by 1, θ, θ2, . . . , θn−1.

Suppose inductively that m ≥ n, and that 1, θ, θ2, . . . , θm ∈ Γ. We express

θn+1 = θm+1−nθn = θm+1−n(−an−1θn−1 − · · · − a0)
= −an−1θm − lower degree stuff ∈ Γ

Backward Direction. Suppose every power of θ lies in a finitely generated additive group G. Then
the subgroup Γ of G generated by

{
1, θ, θ2, . . .

}
must also be finitely generated.

Let v1, . . . , vn be generators of Γ. (wlog can assume not all zero). Each vi ∈ Z[θ] (polynomial
in θ with integer coefficients), so θvi ∈ Z[θ] ∀i. Hence there exists integers bij such that

θvi =

n∑
j=1

bijvj ∀i.

This gives us a system of linear equations

(b11 − θ)v1 + b12v2 + · · ·+ b1nvn = 0

b21v1 + (b22 − θ)v2 + · · ·+ b2nvn = 0

...
bn1v1 + bn2v2 + · · ·+ (bnn − θ)vn = 0

So now we have A~v = ~0 so detA = 0.

The v1, . . . , vn ∈ C give a nontrivial solution to the obvious associated system of linear
equations, so the determinant∣∣∣∣∣∣∣∣∣

b11 − θ b12 · · · b1n
b21 b22 − θ · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn − θ

∣∣∣∣∣∣∣∣∣

65



N. Looper (Spring 2022) Math 1560: Number Theory Lecture Notes

is zero. So the determinant, expanding as minors as a polynomial, is a monic12 polynomial
(in θ) with integral entries bij of which θ satisfies. So θ is an algebraic integer.

Both directions of which are as desired.

Note we prove something stronger and more intuitive:

Lemma
θ ∈ C is an algebraic integer iff the additive subgroup generated by 1, θ, θ2, . . . is in fact
generated by 1, θ, θ2, . . . , θn−1 for some n.

Theorem 14.2
Z is a subring of Q.

Proof. Suppose that θ, φ ∈ Z. We want to show that θ + φ, θφ ∈ Z.

By the lemma, all powers of θ lie in a finitely generated subgroup Γθ of C and similarly, all powers
of φ lie in a finitely generated subgroup Γφ of C.

otoh, all powers of θ + φ and θφ are integer linear combinations of the elements

θkφl ∈ ΓθΓφ

where ΓθΓφ := the additive group generated by viwj where 1 ≤ i ≤ n and 1 ≤ j ≤ m with

Γθ = 〈v1, . . . , vn〉
Γφ = 〈w1, . . . , wm〉

We note that ΓθΓφ is finitely generated, and since each power of θ + φ and θφ lie in this finitely
generated subgroup13, by our lemma θ + φ and θφ are both algebraic integers.

Theorem 14.3 (p.44 or p.45 [ST15])
Let θ ∈ C satisfy a monic polynomial equation with coefficients in Z (not just in Z). Then θ is
an algebraic integer.

Proof. One imitates the proof of the forward direction in our previous setup lemma, applying a bit
of module theory.

12The highest degree of θ comes from the diagonal which monic up to sign. We also have that this is the characteristic
of the bij matrix which is monic.

13The subgroup that they generate had better be finitely generated.
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§14.2 Ring of Integers of a Number Field

Definition 14.4 (Ring of Integers of Number Field K)
If K is a number field, then

OK := K ∩ Z

is called the ring of integers of K.a

aIn textbooks, it’s fraktor O. In papers, usually mathcal O. In handwriting, usually fancy loopy O.

OK is a ring because K and Z are subrings of C. The relationship between K and OK is the same
as that of Q and Z.

Lemma 14.5
If α ∈ K, then cα ∈ OK for some c ∈ Z.

Proof. Let α ∈ K and f(x) = minpolyQ(α), with deg f = n. Let 0 6= c ∈ Z and let gc := cn · f
(
x
c

)
.

Observe:

1) The roots of gc are the cαi where αi are the roots of f .

2) gc is monic.

3) If we choose c to be the lcm of the denominators of the coefficients of f implies that gc has
integer coefficients.

So cα is an element of OK since it is also an algebraic integer.

Corollary 14.6
If K is a number field, then K = Q(θ), for some algebraic integer θ ∈ Z.

Warning! (pp.46-47 [ST15]) Though it is often the case that if K = Q(θ) with θ ∈ Z, then
OK = Z[θ], this need not be true.

Example 14.7
Let K = Q(

√
5). However,

Z[
√

5] ( OK
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In fact,

Z

[
1 +
√

5

2

]
= OK .

Furthermore, is it always the case that OK is generated by a single element? No! OK need not be
of the form Z[θ] for some θ ∈ Z.

Example 14.8
The counterexample of this is

K = Q(θ)

when θ is a root of x3 − x2 − 2x− 8.

Number fields where such a θ does exist are called monogenic.

§15 April 5, 2022

§15.1 Integral Bases for Number Fields

Recall:

• We introduced embeddings of a number field K into C, which was directly related to the
notion of conjugates.

• Also introduced discriminants of Q-bases of number fields.

• Also introduced algebraic integers (algebraic numbers whose minimal polynomials over Q
have integral coefficients).

• We said that the ring of integers of K is by definition OK = K ∩ Z.

– If K = Q, then OK = Z.

Definition 15.1 (Integral Basis)
Suppose B = {α1, . . . , αn} is a Q-basis for K such that αi ∈ OK ∀i. We say that B is an
integral basis for OK if every element α ∈ OK can be expressed uniquely as

α = a1α1 + a2α2 + · · ·+ anαn

where each ai ∈ Z.
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Theorem 15.2
Every number field has an integral basis.

Example 15.3
Sometimes, we’re lucky or it’s obvious. For example, if K = Q(

√
2) then the obvious basis

B = {1,
√

2} is an integral basis.

Proof. Let K be a number field of degree n. We had noted that if {α1, . . . , αn} is a Q-basis of K
with αi ∈ OK ∀i, then

∆ [α1, α2, . . . , αn] ∈ Z

We take the absolute value and apply a well-ordering argument. Let {ω1, . . . , ωn} be a Q-basis with
ωi ∈ OK ∀i and

|∆ [ω1, . . . , ωn] | ≤ |∆ [α1, . . . , αn] |

for any Q-basis {α1, . . . , αn} with αi ∈ OK ∀i (it has the least absolute value of discriminant).

Claim — {ω1, . . . , ωn} is an integral basis for OK .

Suppose otherwise, that there is an ω ∈ OK such that ω = a1ω1 + a2ω2 + · · ·+ anωn where αi ∈ Q
and at least one ai 6∈ Z.

wlog suppose a1 6∈ Z. Then we can write

α1 = a+ r

where a is an integer and 0 ≤ r ≤ 1.

Let

ψ1 = ω − aω1

ψi = ωi

for the remaining indices. We check that these are integers ψi ∈ OK ∀i which is immediate since
OK is a ring.

The matrix sending the ωi’s to the ψi (with respect to the ωi-basis) is

M =


a1 − a 0 0 · · · 0

a2 1 0 · · · 0

a3 0 1 · · · 0
...

...
...

. . .
...

an 0 0 · · · 0
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Since this matrix is lower triangular, the determinant is the product of the diagonal entries, namely:
a1 − a = r.14

Hence,

∆[ψ1, ψ2, . . . , ψn] = (detM)2∆[ω1, ω2, . . . , ωn]

= r2∆[ω1, ω2, . . . , ωn]

contradicting the minimality of {ω1, . . . , ωn} with respect to |∆|.

Thus {ω1, . . . , ωn} is an integral basis for K.

Remark 15.4. A bit of extra reflection shows that any integral basis has a discriminant achieving this
minimal possible absolute value.

Question. How do you know if you’re looking at an integral basis?

You can sometimes diagnose this from the discriminant.

Theorem 15.5 (p.50 [ST15])
Suppose {α1, . . . , αn}, with αi ∈ OK ∀i forms a Q-basis for K. If δ[α1, . . . , αn] is squarefree,
then {α1, . . . , αn} is an integral basis.

Proof. Let {β1, β2, . . . , βn} is an integral basis. Then ∃cij ∈ Z such that each

αi =
∑
j

cijβj ∀i.

Then M = (cij) is the change of basis matrix from the αi’s to the βi’s.

∆[α1, . . . , αn] = (detM)2∆[β1, . . . , βn]

We know both detM and ∆[β1, . . . , βn] are integers and ∆[α1, . . . , αn] is squarefree. This forces
detM = ±1 so in fact {α1, . . . , αn} is an integral basis.

Example 15.6

Let K = Q(
√

5). We previously observed that θ = 1+
√
5

2 ∈ Z hence θ ∈ OK (θ is a root of
x2 − x− 1).

∆

[
1,

1 +
√

5

2

]
=

∣∣∣∣∣ 1 1+
√
5

2

1 1−
√
5

2

∣∣∣∣∣ = (−
√

5)2 = 5

14A nonzero determinant gives that M is indeed a change-of-basis matrix. So this is indeed a basis.
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thus
{

1, 1+
√
5

2

}
is an integral basis for K.

We previously said that the discriminant of integral bases are invariant for each number field, so we
give this a name:

Definition 15.7 (Discriminant of Number Field)
Let K be a number field. The discriminant associated to any integral basis of OK is called the
discriminant of K.

Example 15.8
The discriminant of K = Q(

√
5) has disc(K) = 5 (by previous computation).

Example 15.9
What about K = Q(

√
2), OK = Z[

√
2]? We have∣∣∣∣ 1
√

2

1 −
√

2

∣∣∣∣2 = (−2
√

2)2 = 8

What if we don’t want to do linear algebra? Previously we had that with power bases and
Vandermonde discriminants, the discriminant of the basis is the discriminant of the minimum
polynomial. {1,

√
2} yields minimum polynomial x2 − 2 which has determinant 8.

Example 15.10
More interesting, K = Q(θ) for θ a root of

x3 − x2 − 2x− 8

An integral basis for OK is given by {
1, θ,

θ + θ2

2

}
which is a number field that doesn’t have a power integral basis. We have no basis of form
{1, ω, ω2, . . . , ωn−1}. The discriminant of this number field is −503.

Note: the following are “synonyms”:

1. OK = Z[θ] for some θ ∈ Z, θ ∈ OK .

2. OK (or K) is monogenic.
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3. {1, θ, θ2, . . . , θn−1} with deg θ = n forms an integral basis for some θ ∈ OK .

4. OK (or K) has a power integral basis.

We’ll look at in more detail quadratic fields and cyclotomic extensions.

§15.2 Quadratic Fields

Definition 15.11 (Quadratic Field)
A quadratic field is a number field of degree 2 over Q. For K to be quadratic is for K = Q(θ)
where θ a root of x2 + ax+ b, a, b ∈ Z.

This gives that θ = −a±
√
a2−4b
2 . We can write a2 − 4b = r2d where r, d ∈ Z with d squarefree. This

gives θ = −a±r
√
d

2 . Immediately,

Proposition 15.12
The quadratic fields are exactly those of the form Q(

√
d) for a squarefree integer d.

Theorem 15.13 (p.64 of [ST15])
Let d ∈ Z be a squarefree integer and let K = Q(

√
d). Then OK equals

a) Z
[√

d
]
if d 6≡ 1 (mod 4).

b) Z
[
1+
√
d

2

]
if d ≡ 1 (mod 4).

Proof. Next time.

§16 April 7, 2022

§16.1 Quadratic Fields continued
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Definition
A quadratic field is a number field K of degree 2 over Q.

Thus K = Q(θ) for θ a zero of some
x2 + ax+ b

for a, b ∈ Z.

Hence,

θ =
−a±

√
a2 − 4b

2
.

Thus from which it follows

Proposition
The quadratic fields are of the form Q(

√
d) where d ∈ Z is squarefree.

Theorem (p.64 of [ST15])
Let d ∈ Z be a squarefree integer and let K = Q(

√
d). Then OK equals

a) Z
[√

d
]
if d 6≡ 1 (mod 4).

b) Z
[
1+
√
d

2

]
if d ≡ 1 (mod 4).

Proof. Every α ∈ Q(
√
d) is of the form

α =
a± b

√
d

c

with a, b, c ∈ Z and gcd(a, b, c) = 1. Now α ∈ OK iff the coefficients of(
x− a+ b

√
d

c

)(
x− a− b

√
d

c

)
are in Z. This holds iff

a2 − b2d
c2

∈ Z and
2a

c
∈ Z

If (a, c) 6= 1, then in our first expression, the fact that d is squarefree forces our common factor
must also be shared with b. So gcd(a, b, c) 6= 1. So (a, c) = 1. Looking at our second expression, c
is forced to be 1 or 2.

If c = 1, then α ∈ OK anyway, so assume that c = 2. We have that gcd(b, c) = 1 by the same
reasoning as before, so c = 2 implies that a and b are both odd.
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Moreover, α ∈ OK with these assumptions iff

a2 − b2d
c2

=
a2 − b2d

4
∈ Z

which happens iff a2 − b2d ≡ 0 (mod 4). Then a, b odd implies a2 ≡ b2 ≡ 1 (mod 4) so we get that
this is equivalent to d ≡ 1 (mod 4).

Thus c = 2 and α ∈ OK implies that d ≡ 1 (mod 4).

In sum, if d 6≡ 1 (mod 4), then c = 1, so we’ve shown that OK = Z[
√
d]. If d ≡ 1 (mod 4), then we

can have c = 2 and a, b odd. Hence OK = Z
[
1+
√
d

2

]
.

Theorem 16.1 (p.65 [ST15])
We then have the following:

a) If d 6≡ 1 (mod 4), then {1,
√
d} is an integral basis. If d ≡ 1 (mod 4), then

{
1, 1+

√
d

2

}
is an

integral basis.

b) If d 6≡ 1 (mod 4), then disc(K) = 4d. If d ≡ 1 (mod 4), then discK = d.

§16.2 Cyclotomic Extensions

Definition 16.2
A cyclotomic field/extension is a number field of the form

K = Q(ζn), ζn = e2πi/n.

That is, ζn is the primitive n-th root of unity. We could just as easily take ζn = e2πik/n where
gcd(k, n) = 1.

Example 16.3
n = 1 is boring. n = 2 is boring. n = 2 gives a quadratic field.

Example 16.4
K = Q(i) for n = 4, ζ4 = i.

K = Q(
√
−3) = Q

(
1+
√
−3

2

)
= Q(ζ3).

We note:
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• Any embedding of Q(ζn) ↪→ C has image contained in Q(ζn). (In other words, these extensions
are Galois over Q.)

• We care about extensions of the form Q( n
√
a) where a ∈ Q. But these are not Galois in

general.

The solution is to “repair” the base field. Take K = Q(ζn) and L = K( n
√
a). Then L/K is

Galois. This is to say that the embeddings L ↪→ C that fix K stabilize L (send L to itself).

• Kronecker-Weber theorem that every finite Abelian extension of Q is contained in some
cyclotomic extension.

We have some key facts about cyclotomic extensions:

1) [Q(ζn) : Q] = φ(n).

2) The field automorphisms σ : Q(ζn) → Q(ζn) form a cyclic group under composition, of order
φ(n). (Our automorphisms send ζn to some other primitive n-th root of unity ζ ′n.)

From now on, let K = Q(ζn).

3) Then OK = Z[ζn]. The case where n = p is in the textbook.

4) We have

disc(K) = (−1)φ(n)/2
nφ(n)∏

p|n
p prime

pφ(n)/(p−1)

For n = p prime, we get

disc(Q(ζp)) = (−1)(p−1)/2 · p
p−1

p

= (−1)(p−1)/2 · pp−2

In particular, if p ∈ Z is a prime with p - n, then p - disc(K).

§16.3 Prime Factorization in Number Fields

Useful to note that this is section 5.1 in [ST15].

Recall: the examples of non-UFDs given previously in Math 1530.

Example 16.5
In Z[

√
−5], we have 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). And we check that each term here is
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irreducible.

(2, for example, is not an associate of 1 +
√
−5 or (1−

√
−5). Simply reason by norms.)

Example 16.6
What about Q(

√
15)?

2 · 5 = (5 +
√

15)(5−
√

15)

in Z[
√

15].

Example 16.7
In Q(

√
30),

2 · 3 = (6 +
√

30)(6−
√

30)

In Q(
√
−10),

2 · 7 = (2 +
√
−10)(2−

√
−10)

Question. What’s going wrong?

In example 16.6, we notice

5 +
√

15 =
√

5(
√

5 +
√

3)

5−
√

15 =
√

5(
√

5−
√

3)

Multiplying these together, we get

25− 15 = 10 = 5 · (
√

5 +
√

3) · (
√

5−
√

3)

so the factors in √
5

√
5 +
√

3
√

5−
√

3

are being grouped in 2 ways:
(a21)(a2a3) = (a1a2)(a1a3)

In other words, the problem goes away in OL for L = Q(
√

15,
√

5) = Q(
√

3,
√

5) (we extend to get
some other things in it).

We can check that the same thing underlies the other two examples.

Theorem 16.8 (Principal Ideal Theorem)
Let K be a number field. Then there is a finite extension L/K such that every nonzero α ∈ OK
has a unique factorization into irreducibles in OL.

Caution! This does not say that OL is a UFD. So it is not true that every number field K has a
finite extension L/K such that OL is a UFD.
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§17 April 12, 2022

§17.1 Ideals and Fractional Ideals

Let R be a commutative ring with an identity.

Recall that if I, J are ideals of R, then

I + J := {ai + bj | ai ∈ I, bj ∈ J}

and
IJ :=

{∑
aibj | ai ∈ I, bj ∈ J

}
Let K be a number field. An ideal of riOK is sometimes called an intgral ideal. This is to contrast
them with fractional ideals.

Definition 17.1
A fractional ideal of OK is a set of the form c−1b when b is an ideal of OK and 0 6= c ∈ OK .

Example 17.2
The fractional ideals of Z are of the form rZ where r ∈ Q.

2
5Z is a fractional ideal of Z.

Caution! If OK is a PID, then fractional ideals are of the form

c−1〈d〉

for 0 6= c ∈ OK and d ∈ OK . This is just c−1dOK = αOk where α = c−1d.

Addition/multiplication of fractional ideals works similarly as in the case of ideals:

If a, b are fractional ideals, then

ab :=
{
finite sums

∑
aibj | ai ∈ a, bj ∈ b

}
a + b := {ai + bj | ai ∈ a, bj ∈ b}

If a1 = c−11 b1 and a2 = c−12 b2 where b1, b2 are integral ideals, then we have

a1a2 = (c1c2)
−1b1b2

The multiplication is obviously associative and commutative, with OK as the identity.

Thus, the set of nonzero fractional ideals forms a monoid15 under (commutative) multiplication.

If we want the structure of an Abelian group, we need to build the inverses in.
15Also a commutative ring with addition, actually.
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Theorem 17.3 (p. 109 [ST15])
The nonzero fractional ideals of OK form a group under multiplication.

For each ideal a ⊆ OK , define
a−1 := {x ∈ K | xa ⊆ OK}

Automatically, this set contains all of OK .

If a 6= 0, then for any 0 6= c ∈ a, ca−1 ⊆ OK . Fixing such a c, we have that ca−1 =: b is an ideal of
OK . (Why? ca−1 is an OK-submodule of OK , i.e. that is to say, an ideal of OK .)

Example 17.4
Let’s take K = Q so that OK = Z

a = 5Z

a−1 =
1

5
Z

Thus a−1 = c−1b, so that a−1 is a fractional ideal.

By definition,
aa−1 = a−1a ⊆ OK

Harder to show: aa−1 = OK . We blackbox this for the moment (p.110-112 [ST15], uses fact that
OK is a Dedekind domain). We can extend this discussion to fractional ideals a. Assuming this, we
have shown theorem 17.3.

Theorem (p. 109 [ST15])
The nonzero fractional ideals of OK form a group under multiplication.

Proof. Let a be a nonzero fractional ideal of OK . We have a = c−1b with b integral. We define
a′ = cb−1, which is a fractional ideal, and aa′ = OK . So a′ is the inverse of a.

Recall: A prime ideal of a commutative ring R can be defined in a couple of different ways:

Definition 17.5 (Prime Ideal)
An ideal p is prime if IJ ⊆ p implies I ⊆ p or J ⊆ p.

Definition (Prime Ideal (alternative))
p is prime if ab ∈ p implies that a ∈ p or b ∈ p.
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To prove unique factorization of nonzero ideals, we first need to prove OK is a Dedekind do-
main.

Theorem 17.6 (p.108 [ST15])
The ring of integers OK :

a) is an integral domain,

b) is Noetherian (every ascending chain of ideals terminatesa, or every ideal is finitely generated),

c) is integrally closed in its field of fractions (that is, if α ∈ Frac(OK) = K satisfies a monic
polynomial equation with coefficients in OK , then α ∈ OK),

d) has that every nonzero prime ideal of OK is maximal.

We note that a ring satisfying (a)–(d) is called a Dedekind domain.
aA chain of ideals is a sequence of inclusions I1 ⊆ I2 ⊆ I3 ⊆ · · · ; and for such a chain to terminate means that
∃N such that In = IN for all n ≥ N .

§18 April 14, 2022

Recall: Last time:

• we defined fractional ideals,

• define the inverse of a nonzero integral ideal (and noted at the end of the same definition
holds for fractional ideals)16

• we briefly stated the definition of a Dedekind domain.

§18.1 Dedekind Domains

We introduced last time. . .

16An integral domain has all of its nonzero fractional ideals invertible iff it is a Dedekind domain.
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Theorem (p.109 [ST15])
The ring of integers OK :

(a) is an integral domain;

(b) is Noetherian, that is to mean one of the following:

(i) every ascending chain of ideals terminates, or

(ii) every ideal is finitely generated;

(c) if α ∈ Frac(OK) = K satisfies a nonzero monic polynomial equation with coefficients in
OK , then α ∈ OK (OK is integrally closed in its field of fractions);

(d) every nonzero prime ideal of OK is maximal.

Proof.

(a) We know this.

(b) We know that if [K : Q] = n, then OK is a free Z-module of rank n17.

If a is an ideal of OK , then (a,+) is a free Abelian group of rank ≤ n18. As a group, a is finitely
generated, so a (with some glossing over) is finitely generated as an ideal.

(c) Was noted in a previous lecture.

(d) Let p be a nonzero prime ideal of OK . Let 0 6= α ∈ p. Then N := NK/Q(α) = α1α2 · · ·αn19

where α1 := α and αi are the conjugates of α = α1.

Note that α2α3 · · ·αn ∈ K since the whole product α1α2 · · ·αn ∈ Q ⊆ K and α1 ∈ K. In fact,
α2α3 · · ·αn ∈ OK . Hence N := NK/Q(α) ∈ p. Thus N · OK ⊆ p. This means that, taking
quotients20,

OK/p is a quotient of OK/NOK
But OK/NOK is a finitely generated Abelian group where every element has finite order, so
OK/NOK is finite.

Hence OK/p is finite. So OK/p is also an integral domain (by ring theory). Any finite integral
domain is a field, so OK/p is a field. So p has to be maximal (again by ring theory).

Which proves part (a) through (d).

17That is, a free Abelian group of rank n; or also to say possesses an integral basis of order n
18Theorem 1.16 of [ST15] proves this fact about submodules of free modules.
19We know this lives in Q since it’s a term of the polynomial.
20If I ⊆ J ⊆ R, then R/J is a quotient of R/I.
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Proposition 18.1 (p.112 [ST15])
Every nonzero ideal a ⊆ OK is a product of prime ideals.

Proof. 21 If not, let a be maximal subject to the condition of not being a product of prime
ideals.

Remark. Recall Zorn’s Lemma: in a partially ordered set where every chain has an upper bound,
there is at least one maximal element. We apply Zorn’s Lemma to ideals to find such a maximal ideal.

Then a is not prime, but applying Zorn to the poset of ideals containing a to conclude that a ⊆ p
for some maximal (hence prime) ideal p.

We have that OK ( p−1 ⊆ a−1, since p is a proper ideal of OK , and a ⊆ p.

It follows that22

a ( ap−1 ⊆ aa−1 = OK
By the maximality of a, we have that

ap−1 = p2p3 · · · pr

where ap−1 is a product of prime ideals p2, p3, . . . , pr, so

a = pp2p3 · · · pr

which is a contradiction, since a is the product of prime ideals.

Lemma 18.2 (p.113 [ST15])
For ideals a, b of OK , a | b ⇐⇒ b ⊆ a.

Question. What does a | b mean? It means there exists an ideal c such that b = c · a.

Proof. Since ca ⊆ a, we have that a | b implies that b ⊆ a.

Now we prove the other direction. Suppose b ⊆ a, then

b = a(a−1b),

where a−1b is integral. Letting a−1b = c shows that a | b.

21This is very analogous to the proof of the existence of prime factorization in Z. Noetherian-ness of OK takes the
place of well-ordereding. a being maximal ideal that isn’t the product of prime ideals is akin to selecting a to be
the least element not a product of primes. a itself isn’t prime so is a product, and so on. . .

22Inverses let us preserve containment of (, because if we hit both sides with a−1 we get nice things.
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Theorem 18.3
Every nonzero ideal of OK has a unique factorization as a product of prime ideals.

Proof. The lemma above tells us that p is prime iff p | ab⇒ p | a or p | b. Then proceed as follows
as we had done so in integers.

Suppose

a = p1p2 · · · pr
= q1q2 · · · qs

for some prime ideals p1, p2, · · · , pr, q1, q2, · · · , qs. Then p1 divides qj for some j. Since qj is maximal,
p1 = qj . We multiply by p−11 repeat the process, concludes the proof.

§19 April 21, 2022

Recall: last time we. . .

• Discussed fractional ideals (in OK).

• Introduced inverses to nonzero fractional ideals in OK/Dedekind domains.

• Proved OK was a Dedekind domain

• Used the properties of OK to show that every nonzero ideal of OK factors uniquely as a
product of prime ideals (and the same argument works for Dedekind domains).

§19.1 Ramification Theory

A major topic/theme in classical algebraic number theory is the factorization of ideals in OK
generated by primes in Z.
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Figure 1: Kirby!

Question. Kirby, what primes ramify in Q(i)?

Definition 19.1
Let p ∈ Z+ be a prime, and let K be a number field.

1) We say that p ramified in K (or OK) if, for

(p) := p · OK = pe11 pe22 · · · p
er
r ,

(for pi’s pairwise distinct) we have that some ei ≥ 2.

2) We say that p is totally ramified if
(p) = pn1

where n = [K : Q] and p1 is prime.

3) We say that p is intert if (p) is a prime ideal of OK .

4) We say that p is totally split if
(p) = p1p2 · · · pr

(for pi’s pairwise distinct), n = [K : Q].

Remark 19.2. These categories are not all the classifications of primes!

Example 19.3
(2) = (1 + i)2 in Z[i] = OK for K = Q(i), so 2 ramifies in K (and in fact is totally ramified).

Example 19.4
(3) in Z[i]? It turns out that (3) is a prime ideal. So 3 is inert in Q(i).
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Example 19.5
What about (5) in Z[i]?

5 = (1 + 2i)(1− 2i)

and 1 + 2i, 1− 2i are irreducible, but are not associates. So 5 is totally split in Q(i).

2 key structural questions are:

1) Which primes of OK ramify?

2) How do individual rational primes factor in OK?

Theorem 19.6
p is ramified in K iff p | Disc(K).

Example 19.7
We can now answer the question posed to Kirby! In Q(i),

disc(Q(i)) =

∣∣∣∣ 1 i

1 −i

∣∣∣∣ = (−2i)2 = −4

so 2 is the only prime that ramifies in Q(i).

We prove this in the monogenic case, i.e. when OK = Z[θ] for some θ ∈ OK .

The moral is: study the factorization of f modulo p where f = minpolyQ(θ).

Proof. Suppose K is monogenic, with OK = Z[θ] and let p ∈ Z+ be prime. Let f = minpolyQ(θ).
Since Disc(K) = ∆[1, θ, θ2, . . . , θn−1] = disc(f). We show that p | disc(f)⇔ p ramifies in K.

Let p · OK = pe11 pe22 · · · perr be the prime factorization of p · OK . Then

OK/(p) ∼= OK/pe11 ×OK/p
e2
2 × · · · × OK/p

er
r

by Sunzi’s Theorem, as pi + pj = OK , ∀i 6= j (in HW7).

otoh, we have that

OK/(p) = Z[θ]/pZ[θ] ∼= Z[x]/(p, f(x)) ∼= (Z/pZ)/(f(x))

We first have that Z[θ] ∼= Z[x]/f(x) (since f is the minimum polynomial of θ), then we quotient
again by p23.
23Since we have (R/(a))/(b) ∼= R/(a, b). For example, (Z/5Z)/(2) ∼= Z/(2, 5) ∼= Z/Z.
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If f(x) = π1(x)f1π2(x)f2 · · ·πs(x)fs is the factorization of f into produce of irreducibles, then

(Z/pZ)[x]/(f) ∼= Fp[x]/π1(x)f1 × · · · × Fp[x]/πs(x)fs

(also by Sunzi’s theorem.)

Our goal is to show that these line up. . . s = r and exponents line up.

We isolate OK/pe11 and we have chain

pe11 ( pe11 ( · · · ( p1 ( OK

so p1/p
e1
1 is a maximal ideal of OK/pe11 .

To find maximal ideals in OK/(p), we take the maximal ideal in the first product (p1/pe11 ) and
product with the rest of the product. So there are exactly r maximal ideals, and on the other side
we have exactly s maximal ideals. Thus r = s.

We do a similar thingy done in 1530 when we showed every finite Abelian group is the product of
some cyclic groups:

G ∼= Z/pe11 Z× · · · × Z/perr
∼= Z/qf11 Z× · · · × Z/qfss

where we reordered. We start with some ideal I1

I1 = I1 ×OK/pe22 × · · · × OK/p
er
r

where I1 is maximal in OK/pe11 , and we start forming chains to recover e1, and we continue doing
so by ‘carving’ into other factors. (“nilpotence argument” shows that after appropriate reordering,
ei = fi, ∀i.)

We want to characterize when ei ≥ 2 (so we have ramification). This is when some fi ≥ 2, which is
to say whether f mod p has a repeated root (is not separable). But this is equivalent to saying

disc(f) ≡ 0 (mod p)

since taking discriminants commutes with reduction modulo p. So p | disc(f) = Disc(K).

§20 April 26, 2022

§20.1 Final Exam Logistics

• There is an in-person component and a take-home component to the final, which are weighted
equally.
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• Midterm score will be max(M1, F1) where M1 is the previous midterm score and F1 is the
in-person final component. So a good in-person final component will wipe out the previous
midterm score.

• Take-home will be 72 hours so there is more flexibility and time.

§20.2 Dedekind-Kummer Theorem

Recall: from last time

• We introduced definitions of ramified primes, totally split primes, inert primes.

• We proved that p | Disc(K)⇔ p ramifies in K assuming monogenicity of K.

– We had OK = Z[θ], so we can understand OK well via minpolyQ(θ). We factored

(p) = pe11 · · · p
er
r

Today, we use a similar idea to prove the Dedekind-Kummer Theorem:

Theorem 20.1 (Dedekind-Kummer)
Let K = Q(θ), with θ ∈ OK . Let f := minpolyQ(θ) and let p ∈ Z be a prime. Suppose
p -
[
OK : Z[θ]

]
(in the monogenic case, this is true). If

f(x) = π1(x)e1π2(x)e2 · · ·πr(x)er

is the factorization of f(x) into irreducibles modulo p. Then we have

pOK = pe11 p2
e2 · · · perr

is the prime factorization of pOK , where

pi = (p, πi(θ)) for any lift πi ∈ Z[x] of πi.

(Note: we say that πi(x) is a lift of πi(x) if πi(x) (mod p) = πi(x)).

Example 20.2
K = Q(ζ5), a cyclotomic extension. These are all monogenic. OK = Z[ζ5]. Then

[
OK : Z[θ]

]
= 1

so we can ‘factor’ any prime p. We apply D-K (theorem 20.1) to the minimum polynomial of
ζ5 over Q:

f := minpolyQ(ζ5) = x4 + x3 + x2 + x+ 1

Let’s factor 2OK . The theorem tells us that we need to factor f (mod 2). We claim that f is
irreducible modulo 2.
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If it’s not, then f has either a linear or quadratic factor modulo 2. It’s clear that there are no
linear factors mod 2. Suppose there exists a quadratic factor. Then some α with degF2

α = 2 is
a root of f . Hence F2(α) ∼= F4, so α4 = α, so α is a root of

x3 + x2 + 2x+ 1 = x3 + x2 + 1

which implies that minpolyF2(α) | x3 + x2 + 1 =: g which implies g has a root in F2 which is
obviously a contradiction.

Since f is irreducible, then 2 is inert by D-K.

Example 20.3
Let’s factor 5OK for K = Q(ζ5).

f(x) ≡ x4 − 4x3 + 6x2 − 5x+ 1 (mod 5)

≡ (x− 1)4

so (5) = (5, ζ5 − 1)4 and 5 is totally ramified.

Example 20.4
Similarly, let’s try 11OK with K = Q(ζ5).

f(x) = (x− 4)(x− 9)(x− 5)(x− 3) (mod 11)

so (11) = (11, ζ5 − 4)(11, ζ5 − 9)(11, ζ5 − 5)(11, ζ5 − 3). So 11 is totally split.

More generally for K = Q(ζn), n ≥ 3 prime, p splits completely if and only if p ≡ 1 (mod n).

Proof of D-K (theorem 20.1). Consider the homomorphism

Z[θ]/pZ[θ]
φ−→ OK/pOK

x+ pZ[θ]
φ7−→ x+ pOK

Let m =
[
OK : Z[θ]

]
, so that p - m by hypothesis.

We want to show that φ is surjective. Let x ∈ OK . Then applying Lagrange’s Theorem to the
quotient group OK/Z[θ] tells us that y := mx ∈ Z[θ].

Let m′ be such that m′m ≡ 1 (mod pZ), so that m′m ≡ 1 (mod pOK). Then

m′y + pZ[θ]
φ7−→ m′mx+ pOK = x+ pOK

so φ is surjective (note the importance that p - m in producing m′).
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If {α1, . . . , αn} is an integral basis, then every x ∈ OK is uniquely expressible as x = a1α1+· · ·+anαn
for ai ∈ Z, but we mod by p. Similarly on the left,

{
1, θ, θ2, . . . , θn−1

}
is an integral basis.

So looking at both Z[θ]/pZ[θ] and OK/pOK in their Z/pZ vector-space structures makes it clear
that their orders are each pn.

We have a surjection φ between sets of equal cardinality, hence φ is a bijection. Then φ is also an
isomorphism. Hence

Z[θ]/pZ[θ] ∼= OK/pOK
Last time we said that

Z[θ]/pZ[θ] ∼= Fp[x]/(f) = Fp[x]/π1(x)f1 × · · · × Fp[x]/πs(x)fs (†)

where (f) is the ideal generated by the reduction of f modulo p, and f = πe11 · · ·πerr is the prime
factorization of f .

We also said that eq. (†) is OK/pe11 ×OK/p
e2
2 × · · · × OK/perr as this latter ring is OK/(p).

We deploy the same argument as last time to get the shape component of the theorem (showing
powers are equal). We get that the πi’s correspond to the pi’s and the exponents align (after
appropriate reordering).

§21 April 28, 2022

§21.1 Dedekind-Kummer Theorem continued

Recall: last time we

• Briefly revisited proof that p | Disc(K)⇔ p ramifies in K in the monogenic case.

• Stated Dedekind-Kummer Theorem (theorem 20.1), proved (albeit somewhat rapidly) the
“shape” piece of the theorem.

• Unfinished business: pi = (p, πi(θ)) for πi any lift to Z[x] of the irreducible factor πi that
corresponds to pi.
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Theorem (Dedekind-Kummer)
Let K = Q(θ), θ ∈ OK , f := minpolyQ(θ, p ∈ Z a prime. Suppose p -

[
OK : Z[θ]

]
. If

f(x) = π1(x)e1π2(x)e2 · · ·πr(x)er

is the prime factorization of f mod p, then

pOK = pe11 p2
e2 · · · perr

is the prime factorization of pOK (?) where

pi = (p, πi(θ))

for any lift πi ∈ Z[x] of pii.

Last time, we proved this theorem up to (?), it remains to prove each of the pi’s specifically.

Proof so far. Defined homomorphism

Z[θ]/pZ[θ]
φ−→ OK/pOK

x+ pZ[θ]
φ7−→ x+ pOK

and we argued that φ is an isomorphism.

Hence

OK/pOK∼=
OK/p

ei
i ×···×OK/p

er
r

∼= Z[θ]/pZ[θ] ∼= Z[x]/(p, f(x)) ∼= Fp[x]/(f)∼=

Fp[x]/π1(x)f1×···×Fp[x]/πs(x)fs

(†)

We can break this isomorphism up factor-by-factor (hitting with Sunzi’s theorem).

One argues that r = s and after reordering, ei = fi ∀i, and so in fact (aside)

OK/pi ∼= Fp[x]/(pii(x))

where OK/pi is a finite field of characteristic p (extension of Fp, fi := [OK/pi : Fp]).

We have that Fp[x]/(πi(x)) has degree deg(πi(x)) over Fp, so fi = deg(πi(x)). This fi is called the
inertial degree of pi over p.

Thus
|OK/pi| = pfi = pdeg πi .

end of aside.

The idea (from what I think I gathered from lecture) is to push something back through every
isomorphism to get this result, applying the third isomorphism theorem.
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The ideal (πi(x)) ⊆ Fp[x]/(f) corresponds via the isomorphisms in eq. (†) to the ideal pi/pOK . The
third isomorphism theorem then says that (p, πi(θ)) (for any lift πi) is the only lift of pi/pOK to
OK .

Example 21.1
Dedekind’s Revenge: what can happen when you don’t take the p -

[
OK : Z[θ]

]
into account?

K = Q(
√
−3), OK = Z

[
1+
√
−3

2

]
= Z

[
−1+

√
−3

2

]
= Z[ω]. Maybe you’re silly and you let

θ =
√
−3 such that

[
OK : Z[θ]

]
= 2. Argue that the disc(x2 + 3) = −12 while disc(K) =

disc(x2 + x+ 1) = −3, so we cannot apply Dedekind-Kummer to p = 2.

We get (x2 + 3) = x2 − 1 = (x− 1)2 (mod 2). Incorrectly applying the conclusion of Dedekind-
Kummer would give us the square of a prime ideal, so we conclude that 2 ramifies in OK .

otoh, if we take an actual generating element for OK , say ω and take its minimum polynomial,
factoring modulo 2.

(x2 + x+ 1) (mod 2)

is irreducible over F2 since it has no roots mod 2. So the correct conclusion is that 2 is actually
inert in K = Q(

√
−3).

§21.2 Ramification Degrees, Inertial Degrees, Primes Upstairs + Downstairs

We start upstairs. Let p be a nonzero prime ideal of OK . We showed that OK/p is a finite field. It
has characteristic p where pZ = p ∩ Z. Where pOK = pe(stuff). So it corresponds to a maximal
ideal downstairs.

We already said that fi := [OK/p : Z/pZ = Fp] is called the inertial degree. We can think of OK/p
as an Fp-vector space too. It’s a quotient of the Z/pZ vector space by OK/(p).

But we had commented on the cardinality of this vector space: OK/(p) has order pn, where
n = [K : Q] (OK is a free Abelian group of rank n, and take each basis vector modulo p). Thus we
observe that f ≤ n.

If pOK = pepe22 · · · perr , then e is called the ramification index or the ramification degree of p over
p.

We write e(p|p) to be the ramidication index; f(p|p) to be the inertial degree.

We say that p lies above p in K, and that p lies below p in Q.

Colloquially, p is a “prime upstairs” and p is a “prime downstairs”.
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§21.3 Fundamental Identity

Theorem 21.2 (Fundamental Identity)
Let p ∈ Z be a rational prime, and suppose [K : Q] = n, and

pOK = pe11 p2
e2 · · · pegg

is the prime factorization of pOK , where fi := f(pi|p).

Then
g∑
i=1

eifi = n.

is called the fundamental identity.

If a prime p is totally split, this is a sum of 1’s.

If p is totally ramified, it corresponds to g = 1 and e = n, so the inertial degree is 1.

If p is inert, then the residual extension f = [OK/p1 : Fp] = n.

Remark 21.3. When K/Q is Galois, the ei for 1 ≤ i ≤ g are all the same, and similarly for the fi.

What does this proof look like? It’s fairly involved in the general case, but it simplifies a lot in the
monogenic case which becomes simple given what we’ve done.

Proof. We had
OK/pi ∼= Fp[x]/πi(x)

and that
OK(p) ∼= (Sunzi) ∼= Fp[x]/(f) ∼= (Sunzi)

so deg(f) = n and
|Fp[x]/(πeii )| = pei deg πi = peifi

and we take products (so sums in the exponents).

§22 May 3, 2022

§22.1 Minkowski, Lagrange, and Waring Walk Into a Bar. . .

§22.1.1 Four Squares Theorem and Waring’s Problem
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Theorem 22.1 (Lagrange, 1770)
Every nonnegative integer can be written as a sum of four square integers.

In the same year, Waring asserted, in his book, that

Theorem 22.2 (Waring, 1770)
For every integer k ≥ 2, there is a g(k) such that every nonnegative integer can be written as a
sum of at most g(k) kth powers.

He claimed that g(3) = 9 and g(4) = 19. We note that 23 and 239 require 9 cubes, and 79 requires
19 fourth powers. g(3) = 9 is a result of Wieferich-Kemper (1909) and g(4) = 19 is a result of
Balasubramanian, Dress, Deshouillers (1986). Hilbert proved this theorem in 1909.

There is also a ‘capital G’ version of this question, which is an asymptotic best bound of g(k).

4 ≤ G(3) ≤ 7. This is currently unknown.

G(4) = 16, which we do know. So, your mileage may very much vary on these.

§22.1.2 Lattices and Minkowski’s Theorem

Definition 22.3 (Lattice)
Let e1, e2, . . . , en be a set of basis vectors for Rn. Then the additive subgroup of (Rn,+)
generated by e1, e2, . . . , en is called a lattice.

Example 22.4
The most obvious lattice in Rn is Zn, where we take ei to be the standard basis vectors.

We can take αZn by some 0 6= α ∈ R is also an obvious lattice.

We can also take things like 1
2Z× Z ⊆ R2.

Definition 22.5 (Fundamental Domain)
If L is a lattice generated by e1, e2, . . . , en in Rn, then the fundamental domain of L is the set{∑

aiei | ai ∈ R, 0 ≤ ai < 1
}
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Example 22.6
If we take Z2 ⊆ R2, then the fundamental domain is the square with corners (0, 0) to (1, 1),
with some dotted lines.

Definition 22.7 (Convex, Symmetric)
A set X ⊆ Rn is convex if forall x, y ∈ X,

λx+ (1− λ)y ∈ X

for all 0 ≤ λ ≤ 1.

A set X is symmetric if x ∈ X implies −x ∈ X.

Example 22.8
A triangle is convex but not symmetric. An ellipse about the origin is convex and symmetric.
An annulus is symmetric but not convex.

Theorem 22.9 (Minkowski, p.140 [ST15])
Let L be an n-dimensional lattice in Rn with fundamental domain T , and let X be a bounded
symmetric convex subset of Rn. If

Vol(X) > 2n Vol(T )

then X contains a non-zero point of L.

Example 22.10
If we have the Z2 example, if we have a ‘dotted’ open square with area 4, we just about not
contain any nonzero points. If we add anything in, we’ll have a nontrivial point.

93



N. Looper (Spring 2022) Math 1560: Number Theory Lecture Notes

Proof of 4 squares theorem using Minkowski’s Theorem. We first prove this statement for primes,
then extend to all positive integers. We first have

2 = 12 + 12 + 02 + 02.

So suppose we’re trying to prove p ∈ Z+ is an odd prime.

Claim — The equation r2 + s2 + 1 ≡ 0 (mod p) has a solution (r, s) ∈ Z2.

Why? Every element of Z/pZ is a sum of 2 squares. . .

So let us select such an r, s. Consider the lattice Λ ⊆ Z4 that is given by

Λ = AZ4,

where

A =


p 0 r s

0 p s −r
0 0 1 0

0 0 0 1

 .

We make an observation of the particular nature of the points in this lattice.

If ~t = (t1, t2, t3, t4) ∈ Z4, and ~x = (x1, x2, x3, x4) where ~x = A~t, then

x21 + x22 + x23 + x24 = (pt1 + rt3 + st4)
2 + (pt2 + st3 − rt4)2 + t23 + t24

≡ (rt3 + st4)
2 + (st3 − rt4)2 + t23 + t24 (mod p)

= (1 + r2 + s2)(t23 + t24) (mod p)

= 0 (mod p)

Geometrically, the idea is if we can get the norm to be small enough, we know the sum is exactly p.
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Let’s find an appropriate radius for our ball. A 4-dimensional ball of radius R has volume

π2R4/2

choose R such that

16p2 <
π2R4

2
≈ 4.93R4

4p <≈ 2.22R2

2p <≈ 1.11R2

The next condition is R2 < 2p. So we want R such that

R2 < 2p <≈ 1.11R2

If we take R2 = 1.9p works.

Let X be the ball centered at the origin with radius
√

1.9p. Let T be the fundamental domain for
Λ = AZ4. Then we have Vol(T ) = det(A) = p2.

Then Vol(X) > 2n Vol(T ) = 16p2. Applying Minkowski’s theorem, we conclude that X must contain
some nonzero lattice point of Λ.

If we let ~x = (x1, x2, x3, x4) be this point. Then since ~x ∈ X, so

x21 + x22 + x23 + x24 < R2 < 2p.

so p | x21 + x22 + x23 + x24 and x21 + x22 + x23 + x24 < 2p, and it’s a nonzero point, so this forces

x21 + x22 + x23 + x24 = p,

which is as desired for primes.

In the arbitrary case for arbitrary n, note that

(a2 + b2 + c2 + d2)(A2 +B2 + c2 +D2)

= (aA− bB − cC − dD)2 + (aB + bA+ cD − dC)2+

(aC − bD + cA+ dB)2 + (aD + bC − cB + dA)2.

so composite n is also a sum of 2 squares.

. . . and that’s the course!
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